
Experimentor Documentation
Release 0.3.0rc1

Aquiles Carattino

Jul 22, 2021

Contents:

1 Installing 3
1.1 Setting up a Python working environment . 3
1.2 Installation instructions . 5
1.3 Starting to use the Experimentor . 5
1.4 Experimentor Reference . 8
1.5 experimentor . 36

Python Module Index 87

Index 89

i

ii

Experimentor Documentation, Release 0.3.0rc1

A flexible package for experiment control and automation

Experimentor is a Python package aimed at simplifying the task of controlling experiments in various fields. The
starting point of the development was a nano photonics setup and therefore the examples and the bulk of the code
makes references to optical microscopes, but by no means this project is limited to them.

The documentation will cover from the basics of installation in a Python virtual environment to more complex tasks
such as adding new features to the package.

Contents: 1

Experimentor Documentation, Release 0.3.0rc1

2 Contents:

CHAPTER 1

Installing

The code of this program is the repository that can be found at https://github.com/aquilesC/experimentor.

If you need further assistance with the installation of the code, please check Installation instructions

1.1 Setting up a Python working environment

This guide is thought for users on Windows willing to either use python 2.7 or 3+

1. Download the version of python you want from https://www.python.org/downloads/windows/ and install it

2. It may be that after installing, python is not added to the path. Don’t worry, things are going to be sorted out
later.

3. Get pip from:

bootstrap.pypa.io/get-pip.py

4. Run:

path/to/python/python.exe get-pip.py

5. Go to path/to/python/Scripts

6. Run:

pip.exe install virtualenv
pip.exe install virtualenvwrapper-powershell

At this point you have a working installation of virtual environment that will allow you to isolate your de-
velopment from your computer, ensuring no mistakes on versions will happen. Let’s create a new working
environment called Testing

7. Run:

3

https://github.com/aquilesC/experimentor
https://www.python.org/downloads/windows/

Experimentor Documentation, Release 0.3.0rc1

virtualenv.exe Testing --python=path\to\python\python.exe

The last piece is important, because it will allow you to select the exact version of python you want to run, it can
be either python2 or python 3 and also it can be Python 64 or 32 bit. You will also create a folder called
Testing, in which all the packages you are going to install are going to be kept.

8. Go to the folder Testing\Scripts. Try to run activate If an error happens (most likely) follow the
instructions below. Windows has a weird way of handling execution policies and we are going to change that.
Open PowerShell with administrator rights (normally, just right click on it and select run as administrator) Run
the following command:

Set-ExecutionPolicy RemoteSigned

This will allow to run local scripts. Go back to the PowerShell without administrative rights and run again the
script activate

9. Now you are working on a safe development environment. If you just type python you will see that you are
running the exact version you wanted. The same goes for packages, you can download specific versions, com-
pletely isolated from what is happening in the computer or in other virtual environments. Imagine there is more
than one user and one decides to use numpy 64-bit but you need numpy 32-bit, you both can work isolated from
each other. Moreover, if you run:

pip freeze > requirements.txt

You are going to generate a file (requirements.txt) with all the installed packages at that given time

10. For developing GUI’s, most likely we are going to use PyQt. Since there is no official repository to install it
through pip, we need to download the appropriate wheel from:

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyqt4

Afterwards, just run (replacing the last part of the command by the wheel you have just downloaded):

pip install PyQt4-4.11.4-cp36-cp36m-win32.whl

11. For saving data, specially when dealing with big datasets, there is almost nothing better than using HDF5
(https://support.hdfgroup.org/HDF5/). For installing, follow the same procedures than with PyQt, you can find
the wheel here: http://www.lfd.uci.edu/~gohlke/pythonlibs/#h5py

Note: h5py requires to have some Visual Basic distributables. Go to http://landinghub.
visualstudio.com/visual-cpp-build-tools to download and install. HDF5 is particularly useful
when the dataset is bigger than the memory available, since it writes/reads to disk but to the user everything is
presented as an array. For example saving to disk is just assigning a value to a variable:

dset[:,:,i] = img

This line would be writing to disk the 2D array img. When reading:

img = dset[:,:,1]

Would load to memory only one 2D array. For the documentation and understanding of how HDF5 works, I
highly suggest reading the website:

http://docs.h5py.org/en/latest/quick.html

4 Chapter 1. Installing

https://support.hdfgroup.org/HDF5/

Experimentor Documentation, Release 0.3.0rc1

1.2 Installation instructions

To install Experimentor it is important to be inside of a virtual environment. If you want to set up a working envi-
ronment, I suggest you to check Setting up a Python working environment. From the command line you can run the
following command:

pip install -U https://github.com/aquilesC/experimentor/archive/master.zip

Remember that in this case master refers to the branch you are installing. In case you want to work with specific
branches of the code, you should change it.

If you are planning to develop code (you need to change, correct a bug, or anything else), you need to install the
package in an editable way. Just run:

pip install -e git+git@github.com:aquilesC/experimentor.git#egg=experimentor

This will install the package inside of your virtual environment and will generate a copy of the repository in vir-
tualenv/src/experimentor that you can edit and push to the repository of your choice. This is very handy when you
want to test new features, etc. It is also possible to work with different branches, making it very easy to keep track of
the changes in the upstream code.

After you have installed the program, you can check how to Starting to use the Experimentor

1.3 Starting to use the Experimentor

The package provides the basic classes and functions to communicate with devices and plan experiments. The package
was designed to impose a workflow that guarantees the user will be able to plan an experiment from start to finish.

Experimentor is packaged with the folder containing the main code, i.e. the package itself, and a folder of examples
that show some cases of how the program can be used.

The logic behind Experimentor is that the parameters that a user has to set for performing an experiment are layed
out in YAML files. So, for example, the port at which a photodiode is plugged is defined in a yaml file. The steps of
the experiment are also layed out in a YAML file, in order to make clear what needs to be set, changed, scanned, etc.
These files are then read and passed to a special class of Experimentor.

Experimentor defines only general classes and methods that enable the user to define a common approach to the
problems, however every experiment is different and has to be developed by each user. The examples folder are a
good starting point for lerning, as well as the explanations found hereafter.

The steps needed to make an experiment using the Experimentor are as follow:

First one has to define which devices are going to be used and make a YAML file for them. Then, the
steps of the experiment are layed out in another YAML file. A class based on Experimentor is written,
with methods for every step layed out in the YAML file. In principle a GUI can be built to modify the
parameters passed to the experimentor class.

Each step is thought in order to force the user to be in control of his/her experiment and not to rely on preconceived
concepts that can be far from how the setup actually works.

1.3.1 Defining devices, sensors and actuators

Every experiment should start by defining what devices, sensors and actuators are going to be used. The general
structure is that devices communicate with the computer, while sensors and actuators are plugged into devices. For

1.2. Installation instructions 5

Experimentor Documentation, Release 0.3.0rc1

example an acquisition card such as an oscilloscope is a device. A photodiode connected to it is a sensor, while a piezo
stage connected to the output of a function generator is an actuator.

In the same fashion, a tunable laser is a device and the wavelength is an actuator. In this way the same structure
of programs can be preserved throughout different projects. This is specially handy when developing GUIs, since it
enables the iteration through all sensors or all actuators of a given device.

Devices, sensors and actuators are defined through YAML files. The examples folder contains some general files that
show how to do it. Generally speaking it would look like something like this:

NI-DAQ:
name: NI-DAQ
type: daq
model: ni
number: 2
driver: experimentor.models.daq.ni/ni
connection:
type: daq
port: 2

trigger: external
trigger_source: PFI0

No field is required a priory, but giving a name is highly recommended. All the other fields are self explanatory.
Sensors and actuators are defined in a similar way:

NI-DAQ:
Stage 1:
port: 1
type: analog
mode: output
description: Example analog Out
calibration:

units: um # Target units, starting from volts. The calibration thus would be:
→˓device_value (true units) = slope*volts+offset

slope: 1
offset: 0

limits:
min: 0um
max: 10um

default: 5um

Note that the first key is the device to which the actuator is plugged. If defining actuators or sensors in the same file,
they should be nested according to the device to which they are plugged. The first key afterwards is the name of the
device and should be unique; if not, it will be overriden by the latest sensor/actuator loaded. The two more important
pieces of information are the calibration and limits. The first explains the program how to convert from volts (the
natural units of any ADQ) to the units of the actuator/sensor. The latter is for safety purposes and to maximize the
convertion resolution of the DAQ that support setting variable gains.

None of the keys specified here are mandatory, but common sense dictates that the ones shown in the example are the
minimum required ones for an experiment.

1.3.2 Defining the Experiment

The experiment, following the scheme developed for devices, sensors and actuators, is layed out in a YAML file. When
writing it, the user has to keep in mind what are the parameters that need to be used, the kind of measurements that
have to be achieved, etc. At this stage it is only a matter of thinking, the real logic and communication with devices
will come later.

6 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

For example, if we want to scan the wavelength of a laser, we would write something like this:

init:
devices: 'config/devices.yml'
sensors: 'config/sensors.yml'
actuators: 'config/actuators.yml'

scan:
laser:
name: Santec Laser
params:

start_wavelength: 1491 nm
stop_wavelength: 1510 nm
wavelength_speed: 10 nm/s
interval_trigger: 0.01 nm
sweep_mode: ContOne
wavelength_sweeps: 1

detectors:
NI-DAQ:

- Photodiode Test
- Photodiode 2

finish:
laser:
shutter: False

You see that by laying down the experiment like this, it is easier to decie what we should do ‘under the hood’. Of
course, this example was already iterated; normally, you would write down fewer parameters, and while developing
the code, you’ll realized you forgot to declare an important variable, then you go back and you added, etc.

Block by block:

init:
devices: 'config/devices.yml'
sensors: 'config/sensors.yml'
actuators: 'config/actuators.yml'

Of course the first step is to established where the config files are. Having it explicitly stated enables the user to keep
several config files for different experiments, but with the same underlying logic. May not be initially apparent why at
the beginning, but it becomes clearer with time.

The second block is where we actually define what scan we want to do:

scan:
laser:
name: Santec Laser
params:

start_wavelength: 1491 nm
stop_wavelength: 1510 nm
wavelength_speed: 10 nm/s
interval_trigger: 0.01 nm
sweep_mode: ContOne
wavelength_sweeps: 1

detectors:
NI-DAQ:

- Photodiode Test
- Photodiode 2

The first key, laser establishes what device we are going to scan. The name here, as you may have guessed, is the

1.3. Starting to use the Experimentor 7

Experimentor Documentation, Release 0.3.0rc1

name we gave to the device when we defined it in devices.yml. The block of parmas sets all the parameters we need
to make a scan, i.e., the starting wavelength, the stop wavelength, etc. At this moment I won’t enter into the details of
the chosen names, but they are closely related to properties in the driver of the laser.

Finally, the detectors block determines what detectors are going to be monitored while the laser is scanning. They are
nested according to the device to which they are plugged to.

There are few things worth noting before moving forward. First, there is no need of any more information for perform-
ing a scan. However you see also that we are not establishing any logic to the measurement, meaning, for example,
when and how we trigger it.

Experimentor is thought in such a way that the logic should be hardcoded into the Python code. However, if it is
important to have the flexibility of altering a trigger behavior, etc. one could add an extra parameter in the scan block
that later will be interpreted by the Python code.

Finally, we have to do something when the experiment finishes, in our case we only want to close the shutter:

finish:
laser:
shutter: False

The overall structure of the yaml file may look a bit more involved than needed by simple experiments; for example
we explicitly state which laser we use, while we could have hard coded this (there is only one laser plugged into the
experiment). However keeping a more flexible approach enables users to re utilize code more easily. Scanning a laser
today may be scanning a stepper motor tomorrow.

1.4 Experimentor Reference

1.4.1 Models

Actions

Action

An action is an event that gets triggered on a device. For example, a camera can have an action acquire or read.
They should normally be associated with the pressing of a button. Action is a handy decorator to register methods on a
model and have quick access to them when building a user interface. They are multi-threaded by default, however, they
share the same executor, defined at the model-level. Therefore, if a device is able to run several actions simultaneously,
different executors can be defined at the moment of Action instantiation.

To extend Actions, the best is to sub class it and re implement the get_executor method, or any other method
relevant to change the expected behavior.

Examples

A general purpose model can implement two methods: initialize and auto_calibrate, we can use the
Actions to increment their usability:

class TestModel:
@Action
def initialize(self):

print('Initializing')

@Action
(continues on next page)

8 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

(continued from previous page)

def auto_calibrate(self):
print('Auto Calibrating')

tm = TestModel()
tm.initialize()
tm.auto_calibrate()
print(tm.get_actions())

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.action.Action(method=None, **kwargs)
Decorator for methods in models. Actions are useful when working with methods that run once, and are nor-
mally associated with pressing of a button. Actions are multi-threaded by default, using a single executor that
returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model itself,
avoiding the need to keep track of the future returned by the action. Be aware of potential racing conditions that
may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e. storing
parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of methods).

get_executor()
Gets the executor either explicitly defined as an argument when instantiating the Action, or grabs it from
the parent instance, and thus is shared between all action in a model.

To change the behavior, subclass Action and overwrite this method.

get_lock()
Gets the lock specified in the keyword arguments while creating the Action, or defaults to the lock stored
in the instance and thus shared between all actions in the model.

Deprecated since version 0.3.0: Since v0.3.0 we are favoring concurrent.futures instead of lower-level
threading for Actions.

get_run()
Generates the run function that will be applied to the method. It looks a big convoluted, but it is one of
the best approaches to make it easy to extend the Actions in the longer run. The return callable grabs the
executor from the method self.get_executor().

Returns A function that takes two arguments: method and instance and that submits them to an
executor

Return type callable

set_action(method)
Wrapper that returns this own class but initializes it with a method and a previously stored dict of kwargs.
This method is what happens when the Action itself is defined with arguments.

Parameters method (callable) – The method that is decorated by the Action

Returns Returns an instance of the Action using the previously stored kwargs but adding the
method

Return type Action

1.4. Experimentor Reference 9

Experimentor Documentation, Release 0.3.0rc1

Features

Features

Features in a model are those parameters that can be read, set, or both. They were modeled after Lantz Feat objects, and
the idea is that they can encapsulate common patterns in device control. They are similar to Settings in behavior,
except for the absence of a cache. Features do communicate with the device when reading a value.

For example, a feature could be the value of an analog input on a DAQ, or the temperature of a camera. They are
meant to be part of a measurement, their values can change in loops in order to make a scan. Features can be used as
decorators in pretty much the same way @propery can be used. The only difference is that they register themselves in
the models properties object, so it is possible to update values either by submitting a value directly to the Feature or
by sending a dictionary to the properties and updating all at once.

It is possible to mark a feature as a setting. In this case, the value will not be read from the device, but it will be
cached. In case it is needed to refresh a value from the device, it is possible to use a specific argument, such as None.
For example:

@Feature(setting=True, force_update_arg=0)
def exposure(self):

self.driver.get_exposure()

@exposure.setter
def exposure(self, exposure_time):

self.driver.set_exposure(exposure_time)

Todo: It is possible to define complex behavior such as unit conversion, limit checking, etc. We should narrow down
what is appropriate for a model and what should go into the Controller.

Todo: A useful pattern is to catch the exception raised by the controllers if a value is out of range, or with the wrong
units.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.feature.Feature(fget=None, fset=None, fdel=None, doc=None,
**kwargs)

Properties that belong to models. It makes easier the setting and getting of attributes, while at the same time
it keeps track of the properties of each model. A Feature is, fundamentally, a descriptor, that extends some
functionality by accepting keyword arguments when defining.

Todo: There is a lot of functionality that can be implemented, but that hasn’t yet, such as checking limits, unit
conversion, etc.

name
The name of the feature, it must be unique since it will be used as a key in a dictionary.

Type str

kwargs
If the feature is initialized with arguments, they will be stored here. Only keyword arguments are allowed.

Type dict

10 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

deleter(fdel)

getter(fget)

kwargs = None

name = ''

setter(fset)

Properties

Properties

Every model in Experimentor has a set of properties that define their state. A camera has, for example, an exposure
time, a DAQ card has a delay between data points, and an Experiment holds global parameters, such as the number of
repetitions a measurement should take.

In many situations, the parameters are stored as a dictionary, mainly because they are easy to retrieve from a file on
the hard drive and to access from within the class. We want to keep that same approach, but adding extra features.

Features of Properties

Each parameter stored on a property will have three values: new_value, value, old_value, which represent the value
which will be set, the value that is currently set and the value that was there before. In this way it is possible to just
update on the device those values that need updating, it is also possible to revert back to the previously known value.

Each value will also be marked with a flag to_update in case the value was changed, but not yet transmitted to the
device. This allows us to collect all the values we need, for example looping through a user interface, reading a config
file, and applying only those needed whenever desired.

The Properties have also another smart feature, achieved through linking. Linking means building a relationship
between the parameters stored within the class and the methods that need to be executed in order to get or set those
values. In the linking procedure, we can set only getter methods for read-only properties, or both methods. A general
apply function then allows to use the known methods to set the values that need to be updated to the device.

Future Roadmap

We can consider forcing methods to always act on properties defined as new/known/old in order to use that information
as a form of cache and validation strategy.

license MIT, see LICENSE for more details

copyright 2021 Aquiles Carattino

class experimentor.models.properties.Properties(parent: experimen-
tor.models.models.BaseModel,
**kwargs)

Class to store the properties of models. It keeps track of changes in order to monitor whether a specific value
needs to be updated. It also allows to keep track of what method should be triggered for each update.

all()
Returns a dictionary with all the known values.

Returns properties – All the known values

Return type dict

1.4. Experimentor Reference 11

Experimentor Documentation, Release 0.3.0rc1

apply(property, force=False)
Applies the new value to the property. This is provided that the property is marked as to_update, or forced
to be updated.

Parameters

• property (str) – The string identifying the property

• force (bool (default: False)) – If set to true it will update the propery on the
device, regardless of whether it is marked as to_update or not.

apply_all()
Applies all changes marked as ‘to_update’, using the links to methods generated with :meth:~link

autolink()
Links the properties defined as ModelProp in the models using their setters and getters.

fetch(prop)
Fetches the desired property from the device, provided that a link is available.

fetch_all()
Fetches all the properties for which a link has been established and updates the value. This method does
not alter the to_update flag, new_value, nor old_value.

classmethod from_dict(parent, data)
Create a Properties object from a dictionary, including the linking information for methods. The data has to
be passed in the following form: {property: [value, getter, setter]}, where getter and setter are the methods
used by :meth:~link.

Parameters

• parent – class to which the properties are attached

• data (dict) – Information on the values, getter and setter for each property

get_property(prop)
Get the information of a given property, including the new value, value, old value and if it is marked as to
be updated.

Returns prop – The requested property as a dictionary

Return type dict

link(linking)
Link properties to methods for update and retrieve them.

Parameters linking (dict) – Dictionary in where information is stored as parame-
ter=>[getter, setter], for example:

linking = {'exposure_time': [self.get_exposure, self.set_exposure]}

In this case, exposure_time is the property stored, while get_exposure is the method
that will be called for getting the latest value, and set_exposure will be called to set the value.
In case set_exposure returns something different from None, no extra call to get_exposure
will be made.

to_update()
Returns a dictionary containing all the properties marked to be updated.

Returns props – all the properties that still need to be updated

Return type dict

12 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

unlink(unlink_list)
Unlinks the properties and the methods. This is just to prevent overwriting linkings under the hood and
forcing the user to actively unlink before linking again.

Parameters unlink_list (list) – List containing the names of the properties to be un-
linked.

update(values: dict)
Updates the values in the same way the update method of a dictionary works. It, however, stores the values
as a new value, it does not alter the values stored. For updating the proper values use self.upgrade().

After updating the values, use self.apply_all() to send the new values to the device.

upgrade(values, force=False)
This method actually overwrites the values stored in the properties. This method should be used only when
the real values generated by a device are known. It will change the new values to None, it will set the value
to value, and it will set the to_update flag to false.

Parameters

• values (dict) – Dictionary in the form {property: new_value}

• force (bool) – If force is set to True, it will create the missing properties instead of
raising an exception.

Models

Models

Models are a buffer between user interactions and real devices. Models should define at least some basic common
properties, for example how to read a value from a sensor and how to apply a value to an actuator. Models can also
take care of manipulating data, for example calculating an FFT and returning it to the user.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.models.BaseModel
All models should inherit from this base model. It defines some basic methods and checks that prevent errors
later at runtime.

_features
Dictionary-like object to store the properties of the model

Type ExpDict

_actions
List-like object to store the available actions. It also stores a lock to prevent multiple actions to be triggered
at the same time

Type ExpList

_settings
Dictionary-like object where the settings are stored. This dictionary is also used to retrieve the latest known
value of the setting.

Type ExpDict

_signals
Dictionary-like object to store the signals of the model

Type ExpDict

1.4. Experimentor Reference 13

Experimentor Documentation, Release 0.3.0rc1

_subscribers
Dictionary-like object storing the subscribers to different signals arising from this model

Type ExpDict

classmethod as_process(*args, **kwargs)
Instantiate the model as a ProxyObject that will run on a separate process.

Warning: This is WORK IN PROGRESS and will remain so for the foreseeable future.

clean_up_threads()
Keep only the threads that are alive.

create_context()
Creates the ZMQ context. In case of wanting to use a specific context (perhaps globally defined), overwrite
this method in the child classes. This method is called during the model instantiation.

create_publisher()
Creates a ZMQ publisher. It will be used by signals to broadcast their information. There is a delay before
returning the publisher to guarantee that it was properly initialized before actually using it.

Returns

• zmq.Publisher – Returns the initialized publisher

• .. todo:: This method has a high chance of being converted to an Action in order to let it
run in parallel

emit(signal_name, payload, **kwargs)
Emits a signal using the publisher bound to the model. It uses the method BaseModel.
get_publisher() to get the publisher to use. You can override that method in order to use a different
publisher (for example, an experiment-based publisher instead of a model-based one.

Notes

If subscribers are too slow, a queue will build up on the publisher, which may lead to the model itself
crashing. It is important to be sure subscribers can keep up.

Parameters

• signal_name (str) – The name of the signal is used as a topic for the publisher.
Remember that in PyZMQ, topics are filtered on the subscriber side, therefore everything
is always broadcasted broadly, which can be a bottleneck for performance in case there are
many subscribers.

• payload – It will be sent by the publisher. In case it is a numpy array, it will use a zero-
copy strategy. For the rest, it will send using send_pyobj, which serializes the payload
using pickle. This can be a slow process for complex objects.

• kwargs – Optional keyword arguments to make the method future-proof. Rigth now, the
only supported keyword argument is meta, which will append to the current meta_data
being broadcast. For numpy arrays, metadata is a dictionary with the following keys:
numpy, dtype, shape. For non-numpy objects, the only key is numpy. The submitted
metadata is appended to the internal metadata, therefore be careful not to overwrite its
keys unless you know what you are doing.

finalize()
Finalizes the model. It only takes care of closing the publisher. Child classes should implement their

14 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

own finalize methods (they get called automatically), and either close the publisher explicitly or use this
method.

classmethod get_actions()
Returns the list of actions stored in the model. In case this behavior needs to be extended, the method can
be overwritten in any child class.

get_context()
Gets the context. By default it is stored as a ‘private’ attribute of the model. Overwrite this method in child
classes if there is need to extend functionality.

Returns The context created with self.create_context()

Return type zmq.Context

classmethod get_features()
Returns the dict-like features of the model. If this behavior needs to be extended, the method can be
overwritten by any child class.

get_publisher()
Returns the publisher stored as a private attribute, and initialized during instantiation of the model. Con-
sider overwriting it in order to extend functionality.

get_publisher_port()
ZMQ allows to create publishers that bind to an available port without specifying which one. This flex-
ibility means that we should check to which port the publisher was bound if we want to use it. See
self.create_publisher() for more details.

Returns The port to which the publisher is bound. A string of integers

Return type str

get_publisher_url()
Each publisher can run on a different computer. This method should return the URL in which to connect
to the publisher.

Todo: Right now it only returns localhost, this MUST be improved

initialize()

classmethod set_actions(actions)
Method to store actions in the model. It is a convenience method that can be overwritten by child classes.

subscribers

class experimentor.models.models.ExpDict

class experimentor.models.models.ExpList

lock = <Lock(owner=None)>

class experimentor.models.models.ProxyObject(cls, *args, **kwargs)
Creates an object that can run on a separate process. It uses pipes to exchange information in and out. This
is experimental and not meant to be used in a real application. It is here as a way of documenting one of the
possible directions.

Note: Right now we are using the multiprocessing pipes to exchange information, it would be useful to use the
zmq options in order to have a consistent interface through the project.

1.4. Experimentor Reference 15

Experimentor Documentation, Release 0.3.0rc1

Exceptions

Model Exceptions

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

exception experimentor.models.exceptions.ExperimentorException
Base exception for all experimentor modules

exception experimentor.models.exceptions.LinkException

exception experimentor.models.exceptions.ModelException

exception experimentor.models.exceptions.PropertyException

exception experimentor.models.exceptions.SignalException

Meta

Meta Models

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.meta.MetaModel(name, bases, attrs)
Meta Model type which will be responsible for keeping track of all the created models in the program. This is
very useful for things like automatically building a GUI, initializing/finishing all the devices, etc. and also to
perform checks at the beginning of the runtime, by doing introspection on all the defined models, regardless of
whether they are instantiated later on or no.

One of the tasks is to generate a list of signals available in each model. Signals are specified as class attributes
and therefore they can be accounted for before instantiating the class. Once the class is being instantiated, each
object will re-instantiate the signals in order to keep its own copy, and establishing the proper owner of the
signal.

get_instances(recursive=False)
Get all instances of this class in the registry.

Parameters recursive (bool) – Search for instances recursively through inherited objects

get_models(recursive=False)
Gets all the models which share the MetaModel origin.

Parameters recursive (bool) – Search recurisvely in sub classes of the model

Models for Devices

Base Device

class experimentor.models.devices.base_device.ModelDevice
All models for devices should inherit from this class.

16 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Meta Devices

class experimentor.models.devices.meta.MetaDevice(name, bases, attrs)
This is a Meta Class that should be used only by devices and not by the experiment itself. It is only to give
more granularity to the program when wanting to perform operations on all the devices or on different possible
measurements.

Device Exceptions

exception experimentor.models.devices.exceptions.DeviceException

Models for Cameras

Base Camera Model

Base Camera Model

Camera class with the base methods. Having a base class exposes the general API for working with cameras. This file
is important to keep track of the methods which are exposed to the View. The class BaseCamera should be subclassed
when developing new Models for other cameras. This ensures that all the methods are automatically inherited and
there are no breaks downstream.

Conventions

Images are 0-indexed. Therefore, a camera with (1024px X 1024px) will be used as img[0:1024, 0:1024] (remember
Python leaves out the last value in the slice.

Region of Interest is specified with the coordinates of the corners. A full-frame with the example above would be
given by X=[0,1023], Y=[0,1023]. Be careful, since the maximum width (or height) of the camera is 1024.

The camera keeps track of the coordinates of the initial pixel. For full-frame, this will always be [0,0]. When croping,
the corner-pixel will change. It is very important to keep track of this value when building a GUI, since after the first
crop, if the user wants to crop even further, the information has to be referenced to the already cropped area.

Notes

IMPORTANT Whatever new function is implemented in a specific model, it should be first declared in the BaseCam-
era class. In this way the other models will have access to the method and the program will keep running (perhaps
with the wrong behavior though).

class experimentor.models.devices.cameras.base_camera.BaseCamera(camera, ini-
tial_config=None)

Base Camera model. All camera models should inherit from this model in order to extend functionality. There
are some assumptions regarding how to update different settings such as exposure, gain, region of interest.

Parameters camera (str or int) – Parameter to identify the camera when loading or initial-
izing it.

AQUISITION_MODE
Different acquisition modes: Continuous, Single, Keep last.

Type dict

1.4. Experimentor Reference 17

Experimentor Documentation, Release 0.3.0rc1

cam_num
This parameter will be used to identify the camera when loading or initializing it.

Type str or int

running
Whether the camera is running or not

Type bool

max_width
Maximum width, in pixels

Type int

max_height
Maximum height, in pixels

Type int

data_type
The data type of the images generated by the camera. This can be used to allocate the correct amount of
memory in buffers, or to reduce data before displaying it. For example, np.uint16.

Type np data type

temp_image
It stores the last image acquired by the camera. Useful for user interfaces that need to display images at a
rate different than the acquisition rate.

Type np.array

ACQUISITION_MODE = {0: 'Single', 1: 'Continuous', 2: 'Keep Last'}

MODE_CONTINUOUS = 1

MODE_LAST = 2

MODE_SINGLE_SHOT = 0

ROI
Sets up the ROI. Not all cameras are 0-indexed, so this is an important place to define the proper ROI.

vals [list or tuple] Organized as (X, Y), where the coordinates for the ROI would be X[0], X[1], Y[0],
Y[1]

acquisition_mode
Single or continuous. :param int mode: One of self.MODE_CONTINUOUS,
self.MODE_SINGLE_SHOT

Type Set the readout mode of the camera

acquisition_ready()
Checks if the acquisition in the camera is over.

binning
The binning of the camera if supported. Has to check if binning in X/Y can be different or not, etc.

The binning is specified as a list or tuple like: [X, Y], with the information of the binning in the X or Y
direction.

camera = 'Base Camera Model'

ccd_height
Returns the CCD height in pixels this is equivalent to the max_height

18 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

ccd_width
Returns the CCD width in pixels this is equivalent to the max_width

clear_ROI()
Clears the ROI by setting it to the maximum available area.

clear_binning()
Clears the binning of the camera to its default value.

configure(properties: dict)
Configure the camera based on a dictionary of properties.

Deprecated since version 0.3.0: By implementing features, this method is no longer required

exposure
Sets the exposure of the camera.

gain
Sets the gain on the camera, if possible

gain [float] The gain, depending on the camera it can be an integer, it can be specified in dB, etc.

initialize()
Initializes the camera.

read_camera()
Reads the camera and stores the image in the temp_image attribute

serial_number
Returns the serial number of the camera, or a way of identifying the camera in an experiment.

stop_acquisition()
Stops the acquisition without closing the connection to the camera.

stop_camera()
Stops the acquisition and closes the connection with the camera.

trigger_camera()
Triggers the camera.

Camera Model Exceptions

exception experimentor.models.devices.cameras.exceptions.CameraException

exception experimentor.models.devices.cameras.exceptions.CameraNotFound

exception experimentor.models.devices.cameras.exceptions.CameraTimeout

exception experimentor.models.devices.cameras.exceptions.WrongCameraState

Basler

class experimentor.models.devices.cameras.basler.basler.BaslerCamera(camera,
ini-
tial_config=None)

ROI

acquisition_mode

1.4. Experimentor Reference 19

Experimentor Documentation, Release 0.3.0rc1

auto_exposure
Off, Once, Continuous

Type Auto exposure can take one of three values

auto_gain
Off, Once, Continuous

Type Auto Gain must be one of three values

binning_x

binning_y

buffer_size

ccd_height

ccd_width

continuous_reads()

exposure
The exposure of the camera, defined in units of time

finalize()
Finalizes the model. It only takes care of closing the publisher. Child classes should implement their
own finalize methods (they get called automatically), and either close the publisher explicitly or use this
method.

frame_rate

gain
Gain is a float

height

initialize
Decorator for methods in models. Actions are useful when working with methods that run once, and
are normally associated with pressing of a button. Actions are multi-threaded by default, using a single
executor that returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model
itself, avoiding the need to keep track of the future returned by the action. Be aware of potential racing
conditions that may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e.
storing parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of
methods).

new_image
Base signal which implements the common pattern for defining, emitting and connecting a signal

pixel_format
Pixel format must be one of Mono8, Mono12, Mono12p

read_camera()→ list
Reads the camera and stores the image in the temp_image attribute

20 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

start_free_run()
Starts a free run from the camera. It will preserve only the latest image. It depends on how quickly the
experiment reads from the camera whether all the images will be available or only some.

stop_camera
Decorator for methods in models. Actions are useful when working with methods that run once, and
are normally associated with pressing of a button. Actions are multi-threaded by default, using a single
executor that returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model
itself, avoiding the need to keep track of the future returned by the action. Be aware of potential racing
conditions that may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e.
storing parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of
methods).

stop_continuous_reads()

stop_free_run
Decorator for methods in models. Actions are useful when working with methods that run once, and
are normally associated with pressing of a button. Actions are multi-threaded by default, using a single
executor that returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model
itself, avoiding the need to keep track of the future returned by the action. Be aware of potential racing
conditions that may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e.
storing parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of
methods).

trigger_camera()
Triggers the camera.

width

Models for Experiments

Base Experiment Model

Base class for the experiments. BaseExperiment defines the common patterns that every experiment should have.
Importantly, it starts an independent process called publisher, that will be responsible for broadcasting messages that
are appended to a queue. The messages rely on the pyZMQ library and should be tested further in order to assess their
limitations. The general pattern is that of the PUB/SUB, with one publisher and several subscribers.

The messages should include a topic and data. For this, the elements in the queue should be dictionaries with two
keywords: data and topic. data['data'] will be serialized through the use of cPickle, and is handled automati-
cally by pyZQM through the use of send_pyobj. The subscribers should be aware of this and use either unpickle
or recv_pyobj.

1.4. Experimentor Reference 21

Experimentor Documentation, Release 0.3.0rc1

In order to stop the publisher process, the string 'stop' should be placed in data['data']. The message will be
broadcast and can be used to stop other processes, such as subscribers.

Todo: Check whether the serialization of objects with cPickle may be a bottleneck for performance.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.experiments.base_experiment.BaseExperiment

class experimentor.models.experiments.base_experiment.Experiment(filename=None)
Base class to define experiments. Should keep track of the basic methods needed regardless of the experiment
to be performed. For instance, a way to start and a way to finalize a measurement. This class is not meant to be
instantiated directly, but should be subclassed in each project.

Parameters filename (str or None) – Path to the config file that will be loaded. Ideally it
should be an absolute path, to prevent problems. If you submit a relative path, it will depend on
how you are running the program if the file will be found or not.

config
Properties object to store the values of the parameters of the experiments. See experimentor.
models.properties to understand the options and how it works

Type Properties

logger
The logger of the experiment, this is for internal use only

Type logger

alive_threads

connect(method, topic, *args, **kwargs)
Async method that connects the running publisher to the given method on a specific topic.

Parameters

• method – method that will be connected on a given topic

• topic (str) – the topic that will be used by the subscriber to discriminate what infor-
mation to collect.

• args – extra arguments will be passed to the subscriber, which in turn will pass them to
the function

• kwargs – extra keyword arguments will be passed to the subscriber, which in turn will
pass them to the function

connections

finalize()
Needs to be overridden by child classes.

list_alive_threads

load_configuration(filename, loader=<class ’yaml.loader.SafeLoader’>)
Loads the configuration file in YAML format.

Parameters filename (str) – full path to where the configuration file is located.

Raises FileNotFoundError – if the file does not exist.

22 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

static make_filename(folder: Union[str, tuple], filename: str)
This routine will check if the folder to store data exists, and create it if not. It will also check if the
file exists, if it does, it will increase by 1 a counter until an available name appears, and return both the
directory and the filename.

Parameters

• filename – if it contains a ‘{i}’ or similar in its specification, it will use it as a counter,
if not, the number will be prepended to the filename

• folder – either a string with the full path to the folder (bear in mind differences of folder
separators) or a tuple that will be joined using os.path.join

num_threads

set_up()
Needs to be overridden by child classes.

start
Base signal which implements the common pattern for defining, emitting and connecting a signal

stop_subscribers()
Puts the proper data into every alive subscriber in order to stop it.

update_config(**kwargs)

class experimentor.models.experiments.base_experiment.FormatDict
Simple solution to do partial formatting of strings. For example:

>>> a = 'fiber_end_{cartridge}_{i:04}.npy'
>>> cartridge = 123
>>> a.format_map(FormatDict(cartridge=cartridge))
'fiber_end_123_{i:04}.npy'

class experimentor.models.experiments.base_experiment.FormatPlaceholder(key)

class experimentor.models.experiments.base_experiment.MetaExperiment(name,
bases,
attrs)

Meta Model type which will be responsible for keeping track of all the created experiments. It will also be
responsible for registering the publisher, in order to have only one throughout the program and accessible from
other parts of the program. This meta class may be overkill, since in principle every program will be only one
experiment, but this is left as an effort to be future-proof.

Note: Defining meta classes may generate a feeling of obscurantism in the code. It may be wise to remove it
and find a simpler/straightforward approach.

1.4.2 Views

class experimentor.views.data_view_widget.DataViewWidget(parent=None)
Base class that defines some common patterns for views which are meant to display data.

default_Layout
method get_layout

Type By default, views will have a QHBoxLayout, it can be overriden when subclassing, or by
changing the

1.4. Experimentor Reference 23

Experimentor Documentation, Release 0.3.0rc1

data
of what specific type of data it is.

Type This is the data being represented by the widget. This allows to define abstract methods
for saving, regardless

default_layout = 'horizontal'

get_layout()
Returns the layout specified as the class attribute default_layout. Override this method to provide more
complex behavior.

set_layout()

experimentor.views.decorators.try_except_dialog(func)
Decorator to add to methods used in user interfaces. If there is a chance of an error appearing because of devices
in the wrong state, etc. but the logic is not fail proof, you can use this decorator to display an error message with
the stack trace instead of crashing the program.

exception experimentor.views.exceptions.ViewException

Camera View

class experimentor.views.camera.CameraViewerWidget(parent=None)
The Camera Viewer Widget is a wrapper around PyQtGraph ImageView. It adds some common methods for
getting extra mouse interactions, such as performing an auto-range through right-clicking, it allows to drag and
drop horizontal and vertical lines to define a ROI, and it allows to draw on top of the image. The core idea is to
make these options explicit, in order to systematize them in one place.

clicked_on_image: Emits [float, float] with the coordinates where the mouse was clicked on the image. Does not
distinguish between left/right clicks. Any further processing must be done downstream.

layout

Type QHBoxLayout, in case extra elements must be added

viewport

Type GraphicsLayoutWidget

view

Type ViewBox

img

Type ImageItem

imv

Type ImageView

auto_levels

Type Whether to actualize the levels of the image every time they are refreshed

add_actions_to_menu()
Adds actions to the contextual menu. If you want to have control on which actions appear, consider
subclassing this widget and overriding this method.

clicked_on_image

24 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

classmethod connect_to_camera(camera, refresh_time=50, parent=None)
Instantiate the viewer using connect_to_camera in order to get some functionality out of the box. It will
create a timer to automatically update the image

do_auto_range()
Sets the levels of the image based on the maximum and minimum. This is useful when auto-levels are off
(the default behavior), and one needs to quickly adapt the histogram.

draw_target_pointer(locations)
gets an image and draws a circle around the target locations.

Parameters locations (DataFrame) – DataFrame generated by trackpy’s locate method.
It only requires columns x and y with coordinates.

get_roi_values()
Get’s the ROI values in camera-space. It keeps track of the top left corner in order to update the values
before returning. :return: Position of the corners of the ROI region assuming 0-indexed cameras.

keyPressEvent(key)
Triggered when there is a key press with some modifier. Shift+C: Removes the cross hair from the screen
These last two events have to be handeled in the mainWindow that implemented this widget.

mouseMoved(arg)
Updates the position of the cross hair. The mouse has to be moved while pressing down the Ctrl button.

mouse_clicked(evnt)

scene()
Shortcut to getting the image scene

set_roi_lines(X, Y)

setup_cross_cut(max_size)
Set ups the horizontal line for the cross cut.

setup_cross_hair(max_size)
Sets up a cross hair.

setup_mouse_tracking()

setup_roi_lines(max_size=None)
Sets up the ROI lines surrounding the image.

Parameters max_size (list) – List containing the maximum size of the image to avoid ROIs
bigger than the CCD.

update_image(image, auto_range=False, auto_histogram_range=False)
Updates the image being displayed with some sensitive defaults, which can be over written if needed.

Camera Viewer Widget

Wrapper around PyQtGraph ImageView.

class experimentor.views.camera.camera_viewer_widget.CameraViewerWidget(parent=None)
The Camera Viewer Widget is a wrapper around PyQtGraph ImageView. It adds some common methods for
getting extra mouse interactions, such as performing an auto-range through right-clicking, it allows to drag and
drop horizontal and vertical lines to define a ROI, and it allows to draw on top of the image. The core idea is to
make these options explicit, in order to systematize them in one place.

clicked_on_image: Emits [float, float] with the coordinates where the mouse was clicked on the image. Does not
distinguish between left/right clicks. Any further processing must be done downstream.

1.4. Experimentor Reference 25

Experimentor Documentation, Release 0.3.0rc1

layout

Type QHBoxLayout, in case extra elements must be added

viewport

Type GraphicsLayoutWidget

view

Type ViewBox

img

Type ImageItem

imv

Type ImageView

auto_levels

Type Whether to actualize the levels of the image every time they are refreshed

add_actions_to_menu()
Adds actions to the contextual menu. If you want to have control on which actions appear, consider
subclassing this widget and overriding this method.

clicked_on_image

classmethod connect_to_camera(camera, refresh_time=50, parent=None)
Instantiate the viewer using connect_to_camera in order to get some functionality out of the box. It will
create a timer to automatically update the image

do_auto_range()
Sets the levels of the image based on the maximum and minimum. This is useful when auto-levels are off
(the default behavior), and one needs to quickly adapt the histogram.

draw_target_pointer(locations)
gets an image and draws a circle around the target locations.

Parameters locations (DataFrame) – DataFrame generated by trackpy’s locate method.
It only requires columns x and y with coordinates.

get_roi_values()
Get’s the ROI values in camera-space. It keeps track of the top left corner in order to update the values
before returning. :return: Position of the corners of the ROI region assuming 0-indexed cameras.

keyPressEvent(key)
Triggered when there is a key press with some modifier. Shift+C: Removes the cross hair from the screen
These last two events have to be handeled in the mainWindow that implemented this widget.

mouseMoved(arg)
Updates the position of the cross hair. The mouse has to be moved while pressing down the Ctrl button.

mouse_clicked(evnt)

scene()
Shortcut to getting the image scene

set_roi_lines(X, Y)

setup_cross_cut(max_size)
Set ups the horizontal line for the cross cut.

26 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

setup_cross_hair(max_size)
Sets up a cross hair.

setup_mouse_tracking()

setup_roi_lines(max_size=None)
Sets up the ROI lines surrounding the image.

Parameters max_size (list) – List containing the maximum size of the image to avoid ROIs
bigger than the CCD.

update_image(image, auto_range=False, auto_histogram_range=False)
Updates the image being displayed with some sensitive defaults, which can be over written if needed.

Model View

class experimentor.views.model_view.model_view.ModelViewWidget(model: ex-
perimen-
tor.models.devices.base_device.ModelDevice,
parent=None)

get_layout()

model_to_layout()

set_layout()

Widgets

class experimentor.views.widgets.ToggableButton(*args, **kwargs)

toggle(self)

class experimentor.views.widgets.toggable_button.ToggableButton(*args,
**kwargs)

toggle(self)

1.4.3 Drivers

Analog Discovery

See the digilent.constants.

class experimentor.drivers.digilent.AnalogDiscovery
Bases: object

analog_in_acquisition_mode_get()

Returns Current mode

Return type AcquisitionMode

analog_in_acquisition_mode_info()
Returns the supported AnalogIn acquisition modes. They are returned (by reference) as a bit field. This bit
field can be parsed using the IsBitSet Macro. Individual bits are defined using the ACQMODE constants
in dwf.h. The acquisition mode selects one of the following modes, ACQMODE:

1.4. Experimentor Reference 27

Experimentor Documentation, Release 0.3.0rc1

Returns Bitfield of modes, needs to be parsed

Return type int

analog_in_bits_info()

analog_in_buffer_size_get()

analog_in_buffer_size_info()

analog_in_buffer_size_set(buffer_size)

analog_in_channel_attenuation_get(channel)

analog_in_channel_attenuation_set(channel, attenuation)
Configures the attenuation for each channel. When channel index is specified as -1, each enabled AnalogIn
channel attenuation will be configured to the same level. The attenuation does not change the attenuation
on the device, just informs the library about the externally applied attenuation. :param channel: :type
channel: int :param attenuation: :type attenuation: float

analog_in_channel_count()

analog_in_channel_disable(channel)
Disables the specified channel. See analog_in_channel_enable()

Parameters channel (int) –

analog_in_channel_enable(channel)
Enables the specified channel. See analog_in_channel_disable()

Parameters channel (int) –

analog_in_channel_enable_get(channel)

analog_in_channel_filter_get(channel)

analog_in_channel_filter_info()

analog_in_channel_filter_set(channel, filter)

analog_in_channel_offset_get(channel)

analog_in_channel_offset_info()

analog_in_channel_offset_set(channel, offset)

analog_in_channel_range_get(channel)

analog_in_channel_range_info()

Returns

• volts_min (float)

• volts_max (float)

• volts_steps (float)

analog_in_channel_range_set(channel, channel_range)

analog_in_configure(reconfigure=1, start=1)

analog_in_frequency_get()

analog_in_frequency_info()
Retrieves the minimum and maximum (ADC frequency) settable sample frequency.

Returns

28 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

• min_freq (float) – Minimum allowed frequency

• max_freq (float) – Maximum allowed frequency

analog_in_frequency_set(frequency)

analog_in_noise_size_info()

analog_in_record_length_get()

analog_in_record_length_set(length)

analog_in_reset()

analog_in_samples_left()

Retrieves the number of samples left in the acquisition.

Returns Number of samples remaining

Return type int

analog_in_samples_valid()

analog_in_sampling_delay_get()

analog_in_sampling_delay_set(delay)

analog_in_sampling_slope_get()

analog_in_sampling_slope_set(slope)

Parameters slope (TriggerSlope) –

analog_in_sampling_source_get()

analog_in_sampling_source_set(source)

Parameters source (TriggerSource) –

analog_in_status(read_data=0)
Checks the status of the acquisition

Parameters read_data (int) – 0 or 1, to indicate whether data should be read from the
device

Returns The instrument state

Return type InstrumentState

analog_in_status_auto_trigger()

Verifies if the acquisition is auto triggered.

Returns I guess it returns 1 if the acquisition was auto triggered

Return type int

analog_in_status_data(channel, samples, buffer=None)

Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument. It copies the
data samples to the provided buffer.

Parameters

• channel (int) –

1.4. Experimentor Reference 29

Experimentor Documentation, Release 0.3.0rc1

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type np.array

analog_in_status_data_16(channel, first, samples, buffer=None)
Retrieves the acquired raw data samples from the specified idxChannel on the AnalogIn instrument. It
copies the data samples to the provided buffer or creates a new one. This is the raw data, as opposed to
what analog_in_status_data() returns.

Parameters

• channel (int) –

• first (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type numpy.array

analog_in_status_data_2(channel, first, samples, buffer=None)

Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument.
It copies the data samples to the provided buffer or creates a new buffer. This method allows to
specify which data will be copied. To retrieve all data see analog_in_status_data().

Parameters

• channel (int) –

• first (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type numpy.array

analog_in_status_index()
Retrieves the buffer write pointer which is needed in ScanScreen acquisition mode to display the scan bar.
:returns: Variable to receive the position of the acquisition. :rtype: int

analog_in_status_noise(channel, samples)
Retrieves the acquired noise samples from the specified idxChannel on the AnalogIn instrument.

Parameters

• channel (int) –

• samples (int) –

Returns minimum noise data, maximum noise data

Return type 2-colum numpy.array

30 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

analog_in_status_record()
Retrieves information about the recording process. The data loss occurs when the device acquisition is
faster than the read process to PC. In this case, the device recording buffer is filled and data samples are
overwritten. Corrupt samples indicate that the samples have been overwritten by the acquisition process
during the previous read. In this case, try optimizing the loop process for faster execution or reduce the
acquisition frequency or record length to be less than or equal to the device buffer size (record length <=
buffer size/frequency).

Returns

• data_available (int) – Available number of samples

• data_lost (int) – Lost samples after the last check

• data_corrupt (int) – Number of samples that can be corrupt

analog_in_status_sample(channel)
Gets the last ADC conversion sample from the specified idxChannel on the AnalogIn instrument.

Parameters channel (int) –

Returns Sample value

Return type float

analog_in_trigger_auto_timeout_get()

analog_in_trigger_auto_timeout_info()

analog_in_trigger_auto_timeout_set(timeout=0)

analog_in_trigger_channel_get()

analog_in_trigger_channel_info()

analog_in_trigger_channel_set(channel)
Sets the trigger channel.

analog_in_trigger_condition_get()

analog_in_trigger_condition_info()
Returns the supported trigger type options for the instrument. They are returned (by reference) as a bit field.
This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the DwfTriggerSlope
constants in dwf.h. These trigger condition options are:

• DwfTriggerSlopeRise (This is the default setting):

– For edge and transition trigger on rising edge.

– For pulse trigger on positive pulse; For window exiting.

• DwfTriggerSlopeFall

– For edge and transition trigger on falling edge.

– For pulse trigger on negative pulse; For window entering.

• DwfTriggerSlopeEither

– For edge and transition trigger on either edge.

– For pulse trigger on either positive or negative pulse.

Returns info

Return type int

1.4. Experimentor Reference 31

Experimentor Documentation, Release 0.3.0rc1

analog_in_trigger_condition_set(condition)

analog_in_trigger_filter_get()

analog_in_trigger_filter_info()
Returns the supported trigger filters. They are returned (by reference) as a bit field which can be parsed
using the IsBitSet Macro. Individual bits are defined using the FILTER constants in DWF.h. Select trigger
detector sample source, FILTER:

• filterDecimate: Looks for trigger in each ADC conversion, can detect glitches.

• filterAverage: Looks for trigger only in average of N samples, given by
analog_in_frequency_set().

analog_in_trigger_filter_set(trig_filter)

analog_in_trigger_holdoff_get()

analog_in_trigger_holdoff_info()
Returns the supported range of the trigger Hold-Off time in Seconds. The trigger hold-off is an adjustable
period of time during which the acquisition will not trigger. This feature is used when you are triggering
on burst waveform shapes, so the oscilloscope triggers only on the first eligible trigger point.

Returns

• min_holdoff (float)

• max_holdoff (float)

• steps (float)

analog_in_trigger_holdoff_set(holdoff)

analog_in_trigger_hysteresis_get()

analog_in_trigger_hysteresis_info()
Retrieves the range of valid trigger hysteresis voltage levels for the AnalogIn instrument in Volts. The
trigger detector uses two levels: low level (TriggerLevel - Hysteresis) and high level (TriggerLevel +
Hysteresis). Trigger hysteresis can be used to filter noise for Edge or Pulse trigger. The low and high
levels are used in transition time triggering.

analog_in_trigger_hysteresis_set(level)

analog_in_trigger_length_condition_get()

analog_in_trigger_length_condition_hysteresis_get()

analog_in_trigger_length_condition_info()
Returns the supported trigger length condition options for the AnalogIn instrument. They are returned (by
reference) as a bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined
using the TRIGLEN constants in DWF.h. These trigger length condition options are:

• triglenLess: Trigger immediately when a shorter pulse or transition time is detected.

• triglenTimeout: Trigger immediately as the pulse length or transition time is reached.

• triglenMore: Trigger when the length/time is reached, and pulse or transition has ended.

Returns

Return type supported trigger length conditions

analog_in_trigger_length_condition_set(length)

32 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

analog_in_trigger_length_info()
Returns the supported range of trigger length for the instrument in Seconds. The trigger length specifies
the minimal or maximal pulse length or transition time.

analog_in_trigger_length_set(length)

analog_in_trigger_level_get()

analog_in_trigger_level_info()

analog_in_trigger_level_set(level)

analog_in_trigger_position_get()

analog_in_trigger_position_info()
Returns the minimum and maximum values of the trigger position in seconds. For Single/Repeated acqui-
sition mode the horizontal trigger position is used is relative to the buffer middle point. For Record mode
the position is relative to the start of the capture.

Todo: The documentation specifies steps as double, but it makes more sense for it to be an integer. Other
methods like analog_in_trigger_auto_timeout_info() use an integer

Returns

• min_trigger (float)

• max_trigger (float)

• steps (float)

analog_in_trigger_position_set(position)

analog_in_trigger_source_get()

analog_in_trigger_source_set(source)

analog_in_trigger_type_get()

analog_in_trigger_type_set(trig_type)

analog_out_count()
The number of analog output channels available on this board.

Returns The number of analog channels available

Return type int

analogin_noise_size_get()
Returns the used AnalogIn instrument noise buffer size. This is automatically adjusted according to the
sample buffer size. For instance, having maximum buffer size of 8192 and noise buffer size of 512, setting
the sample buffer size to 4096 the noise buffer size will be 256.

Returns Current noise buffer size

Return type int

analong_in_acquisition_mode_set(mode)

Parameters mode (AcquisitionMode) –

digital_out_configure(status)

digital_out_count()
Returns the number of Digital Out channels by the device specified by hdwf.

1.4. Experimentor Reference 33

Experimentor Documentation, Release 0.3.0rc1

digital_out_counter_get(channel)

digital_out_counter_info(channel)

digital_out_counter_init_get(channel)

digital_out_counter_init_set(channel, start_high, divider)
Sets the initial state and counter value of the specified channel.

digital_out_counter_set(channel, low, high)
Sets the counter low and high values for the specified channel..

digital_out_data_info(channel)
Returns the maximum buffers size, the number of custom data bits.

digital_out_data_set(channel, data_array, num_bits)

digital_out_divider_get(channel)

digital_out_divider_info(channel)

digital_out_divider_init_get(channel)

digital_out_divider_init_set(channel, divider)

digital_out_divider_set(channel, divider)

digital_out_enable_get(channel)

digital_out_enable_set(channel, enable)

digital_out_idle_get(channel)

digital_out_idle_info(channel)
Returns the supported idle output types of the channel. They are returned (by reference) as a bit field. This
bit field can be parsed using the IsBitSet Macro. Individual bits are defined using DigitalOutIdle :

• DwfDigitalOutIdleInit: Output initial value.

• DwfDigitalOutIdleLow: Low level.

• DwfDigitalOutIdleHigh: High level.

• DwfDigitalOutIdleZet: Three state.

digital_out_idle_set(channel, idle)

digital_out_internal_clock_info()

digital_out_output_get(channel)

digital_out_output_info(channel)
Returns the supported output modes of the channel. They are returned (by reference) as a bit field. This bit
field can be parsed using the IsBitSet Macro. Individual bits are defined using the DigitalOutOutput:

• DwfDigitalOutOutputPushPull: Default setting.

• DwfDigitalOutOutputOpenDrain: External pull needed.

• DwfDigitalOutOutputOpenSource: External pull needed.

• DwfDigitalOutOutputThreeState: Available with custom and random types.

digital_out_output_set(channel, output)

digital_out_play_data_set(bits, bits_per_sample, count)

digital_out_play_rate_set(rate)

34 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

digital_out_repeat_get()

digital_out_repeat_info()

digital_out_repeat_set(repeat)

digital_out_repeat_status()

digital_out_repeat_trigger_get()

digital_out_repeat_trigger_set(trigger)
Sets the repeat trigger option. To include the trigger in wait-run repeat cycles, set fRepeatTrigger to TRUE.
It is disabled by default.

digital_out_reset()

digital_out_run_get()

digital_out_run_info()

digital_out_run_set(run_len)

digital_out_run_status()
Reads the remaining run length. It returns data from the last digital_out_status() call.

digital_out_status()

digital_out_trigger_slope_get()

digital_out_trigger_slope_set(slope)

digital_out_trigger_source_get()

digital_out_trigger_source_set(source)

digital_out_type_get(channel)

digital_out_type_info(channel)
Returns the supported types of the channel. They are returned (by reference) as a bit field. This bit field
can be parsed using the IsBitSet Macro. Individual bits are defined using DigitalOutType:

• DwfDigitalOutTypePulse: Frequency = internal frequency/divider/(low + high counter).

• DwfDigitalOutTypeCustom: Sample rate = internal frequency / divider.

• DwfDigitalOutTypeRandom: Random update rate = internal frequency/divider/counter al-
ternating between

low and high values. - DwfDigitalOutTypeROM: ROM logic, the DIO input value is used as
address for output value - DwfDigitalOutTypePlay: Supported with Digital Discovery.

digital_out_type_set(channel, out_type)

digital_out_wait_get()

digital_out_wait_info()
Returns the supported wait length range in seconds. The wait length is how long the instrument waits after
being triggered to generate the signal. Default value is zero.

digital_out_wait_set(wait)

initialize(dev_num=-1)
Initialize the communication with a device identified by its order

Parameters dev_num (int) – The device number to open, by default it opens the last device

Raises DriverException – If the device can’t be opened

1.4. Experimentor Reference 35

Experimentor Documentation, Release 0.3.0rc1

1.5 experimentor

1.5.1 experimentor package

Subpackages

experimentor.config package

Submodules

experimentor.config.global_settings module

Global Settings

Settings that should be available to any experimentor project. If you are starting a new project, you can use the settings
below as an example, and override the ones you think need to be overwritten. Especially things like:

• EXPERIMENT_MODEL

• EXPERIMENT_MODEL_INIT

• START_WINDOW

The only variables that will be considered are those written all in CAPITAL LETTERS.

Module contents

Settings

Experimentor relies on some general settings in order to run. For example, one can specify the port at which the
publisher or pusher connects, or the window which is the starting point for the user interface. We specify some global
parameres at experimentor.config.global_settings, that can be overriden at runtime by specifying the
environmental variable EXPERIMENTOR_SETTINGS_MODULE.

Only variables written in ALL CAPITAL LETTERS will be taken into account.

Note: The inspiration for this flow comes from ‘Django’s Settings mod-
ule<https://github.com/django/django/blob/c574bec0929cd2527268c96a492d25223a9fd576/django/conf/__init__.py>‘_

class experimentor.config.Settings(settings_module)
Bases: object

Loads the global parameters and overrides them with those specified in the settings module of the project.

experimentor.core package

Submodules

experimentor.core.app module

36 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

experimentor.core.data_source module

Data Source

These objects are defined in models and are meant to be used to broadcast information across different objects, either on
different threads, processes, or computers. In their core, they are ZMQ Publishers and hold the necessary information
in order to create a subscriber based on them.

class experimentor.core.data_source.DataSource
Bases: object

connect()

finalize()

initialize()

experimentor.core.exceptions module

exception experimentor.core.exceptions.DuplicatedParameter
Bases: experimentor.core.exceptions.ExperimentorException

exception experimentor.core.exceptions.ExperimentDefinitionException
Bases: experimentor.core.exceptions.ExperimentorException

exception experimentor.core.exceptions.ExperimentorException
Bases: Exception

exception experimentor.core.exceptions.ModelDefinitionException
Bases: experimentor.core.exceptions.ExperimentorException

experimentor.core.measurement_parameters module

Measurement Classes

Collection of classes useful for developing the logic of a measurement

Section author: Aquiles Carattino

class experimentor.core.measurement_parameters.Parameter(units=None,
ui_class=None)

Bases: object

Parameters that belong to a measurement. They allow to define units, limits and ui_classes.

name = ''

experimentor.core.measurement_procedure module

class experimentor.core.measurement_procedure.Procedure(procedure)
Bases: object

Decorator to check the validity of a procedure before performing a measurement

check_parameters(cls, *args, **kwargs)

1.5. experimentor 37

Experimentor Documentation, Release 0.3.0rc1

experimentor.core.meta module

class experimentor.core.meta.ExperimentorProcess(*args, **kwargs)
Bases: multiprocessing.context.Process

class experimentor.core.meta.ExperimentorThread(*args, **kwargs)
Bases: threading.Thread

class experimentor.core.meta.MetaProcess(name, bases, attrs)
Bases: type

Meta Class that should be shared by all processes in order to be sure they all switch off nicely when done.

get_instances(recursive=False)
Get all instances of this class in the registry. If recursive=True search subclasses recursively

experimentor.core.publisher module

Publisher

Publishers are responsible for broadcasting the message over the ZMQ PUB/SUB architecture. The publisher runs
continuously on a separated process and grabs elements from a queue, which in turn are sent through a socket to any
other processes listening.

Todo: In the current implementation, data is serialized for being added to a Queue, then deserialized by the publisher
and serialized again to be sent. These three steps could be simplify into one if, for example, one assumes that objects
where pickled. There is also a possibility of assuming numpy arrays and using a zero-copy strategy.

copyright Aquiles Carattino

license MIT, see LICENSE for more details

class experimentor.core.publisher.Publisher(event, name=None)
Bases: experimentor.core.meta.ExperimentorProcess

Publisher class in which the queue for publishing messages is defined and also a separated process is started. It
is important to have a new process, since the serialization/deserialization of messages from the QUEUE may be
a bottleneck for performance.

run()
Start a new process that will be responsible for broadcasting the messages.

Todo: Find a way to start the publisher on a different port if the one specified is in use.

stop()

experimentor.core.publisher.start_publisher()
Wrapper function to start the publisher. It takes care of checking that there is only one publisher running by
storing it in the settings.

Todo: Find a good way of starting a publisher once per measurement cycle.

38 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

experimentor.core.pusher module

Pusher

New in version 0.2.0.

Half the ZMQ implementation is abut broadcasting information from a publisher to different subscribers. However,
the other half is giving information to the publisher to broadcast. We are doing this with a PUSH/PULL pattern. The
pusher is therefore able to send information to the Publisher to then broadcast. There can be many instances of pushers,
but only one publisher. In other words, this is a fan-in type of architecture.

class experimentor.core.pusher.Pusher(port=None)
Bases: object

The Pusher is class that wraps some common methods of the ZMQ PUSH/PULL architecture.

Warning: The main problem with this pattern is that if there is not PULL on the other side, a queue will
build up on the PUSH side. This happens if, for example, we close the publisher but we keep generating
data. Eventually the queue will outgrow the memory and the computer will crash.

Parameters port (int) – The port on which to connect the PUSH end. If not specified, it will
grab the default value from settings

pusher
The socket where the communication happens

Type socket

i
The number of messages that were pushed from a given

Type int

topic_i
Number of data frames sent on each topic. For example: topic_i[‘topic’]

Type dict

lock
In case the same pusher is shared between different threads, this ensures the messages are sent in the proper
block

Type RLOCK

finish()

publish(data, topic=”)
Publish data on a given topic. This is the core of the Pusher object.

Parameters

• data – Data can be any Python object, provided that it is serializable

• topic (str) – The topic on which the data is being transmitted. If nothing is specified,
it will be a broad transmission, meaning that every subscriber will receive it.

1.5. experimentor 39

Experimentor Documentation, Release 0.3.0rc1

experimentor.core.signal module

class experimentor.core.signal.Signal
Bases: object

Base signal which implements the common pattern for defining, emitting and connecting a signal

emit(payload=None, **kwargs)
Emitting a signal relies on the owner’s publisher or whatever method the owner specifies for broadcasting.
In principle this allows for some flexibility in case owners use different ways of broadcasting information.
For example, the owner could be a QObject and it could use the internals of Qt to emitting signals.

url

experimentor.core.subscriber module

Subscriber

Example script on how to run separate processes to process the data coming from a publisher like the one on
publisher.py. The first process just grabs the frame and puts it in a Queue. The Queue is then used by an-
other process in order to analyse, process, save, etc. It has to be noted that on UNIX systems, getting from a queue
with Queue.get() is particularly slow, much slower than serializing a numpy array with cPickle.

class experimentor.core.subscriber.Subscriber(func, url, topic)
Bases: threading.Thread

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

stop()

experimentor.core.subscriber_process module

Subscriber

Example script on how to run separate processes to process the data coming from a publisher like the one on
publisher.py. The first process just grabs the frame and puts it in a Queue. The Queue is then used by an-
other process in order to analyse, process, save, etc. It has to be noted that on UNIX systems, getting from a queue
with Queue.get() is particularly slow, much slower than serializing a numpy array with cPickle.

Warning: This is work in process. On Windows, since processes are spawned, the subscriber would not work as
expected. That is why we work with Threads instead.

class experimentor.core.subscriber_process.Subscriber(func, topic, pub-
lish_topic=None, args=None,
kwargs=None)

Bases: experimentor.core.meta.ExperimentorProcess

run()
Method to be run in sub-process; can be overridden in sub-class

40 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

stop()

Module contents

experimentor.drivers package

Subpackages

experimentor.drivers.PhotonicScience package

Submodules

experimentor.drivers.PhotonicScience.scmoscam module

UUTrack.Controller.devices.PhotonicScience.scmoscam.py

A wrapper class originally written by Perceval Guillou, perceval@photonic-science.com in Py2 and has been tested
successfully with scmoscontrol.dll SCMOS Pleora (GEV) control dll (x86)v5.6.0.0 (date modified 10/2/2013)

SaFa @nanoLINX has adapted the wrapper class for a camera control program.

v1.0, 24 feb. 2015

Section author: SaFa <S.Faez@uu.nl>

class experimentor.drivers.PhotonicScience.scmoscam.GEVSCMOS(cwd_path, name)
Bases: object

AbortSnap()

AutoBinningFilter(enable)

Close()

Demangle(image_pointer, Nx, Ny)

EnableAutoLevel(enable)

EnableBestFit(enable)

EnableBinningFilter(enable)

EnableBrightPixel(enable)

EnableClip(enable)

EnableFlatField(enable)

EnableGamma(enable)

EnableOffset(enable)

EnableRemapping(enable)

EnableSharpening(enable)

EnableSmooth(enable)

EnableStreaming(enable)

FreeSequence()

1.5. experimentor 41

mailto:perceval@photonic-science.com
mailto:S.Faez@uu.nl

Experimentor Documentation, Release 0.3.0rc1

GetDLL()

GetDLLName()

GetImage(imp=None)

GetImagePointer()

GetMode()

GetName()

GetOptions()

GetPedestal()

GetRawImage()

GetRemapSize()

GetSequencePointer(id)

GetSize()

GetSizeMax()

GetState()

GetStatus()

GetTemperature()

Has8bitGainModes()

HasBinning()

HasClockSpeedLimit()

HasHPMapping()

HasIntensifier()

HasTemperature()

InitFunctions()

InitSequence(imnum)

IsFlipped()

IsInCamCor()

IsIntensifier()

LoadCamDLL()

MakeFlatField()

Open()

OpenMap(file_name=’distortion.map’)

Remap(image_pointer, Nx, Ny)

ResetOptions()

SaveSequence()

SelectIportDevice()

SetALCMaxExp(maxexp)

42 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

SetALCWin(l, t, r, b)

SetBFPeek(peek)

SetChipGain(gain)

SetClockSpeed(mode)

SetExposure(expo, unit)

SetFlatAverage(average_number)

SetFlickerMode(value)

SetGainMode(mode)

SetGammaBright(value)

SetGammaPeak(value)

SetIFDelay(delay)

SetIntensifierGain(gain)

SetPowerSavingMode(mode)

SetSoftBin(Sx, Sy)

SetSubArea(left, top, right, bottom)

SetTemperature(temp)

SetTrigger(mode)

SetVideoGain(gain)

Snap()

SnapAndReturn()

SnapSequence()

SoftBinImage(image_pointer, Nx, Ny)

UnloadCamDLL()

UpdateSize()

UpdateSizeMax()

Module contents

UUTrack.Controller.devices.PhotonicScience

company Photonic Science.

experimentor.drivers.hamamatsu package

Submodules

experimentor.drivers.hamamatsu.hamamatsu_camera module

1.5. experimentor 43

Experimentor Documentation, Release 0.3.0rc1

Module contents

UUTrack.Controller.devices.hamamatsu

company Hamamatsu.

experimentor.drivers.keysight package

Submodules

experimentor.drivers.keysight.inifiniivision module

Module contents

UUTrack.Controller.devices.keysight

company Keysight.

experimentor.drivers.santec package

Submodules

experimentor.drivers.santec.tsl710 module

Module contents

experimentor.drivers.thorlabs package

Submodules

experimentor.drivers.thorlabs.data_types module

experimentor.drivers.thorlabs.mabuchi module

experimentor.drivers.thorlabs.stepper_motor module

experimentor.drivers.thorlabs.tdc001 module

Module contents

experimentor.drivers.digilent package

Submodules

44 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Digilent

class experimentor.drivers.digilent.AnalogDiscovery
Bases: object

analog_in_acquisition_mode_get()

Returns Current mode

Return type AcquisitionMode

analog_in_acquisition_mode_info()
Returns the supported AnalogIn acquisition modes. They are returned (by reference) as a bit field. This bit
field can be parsed using the IsBitSet Macro. Individual bits are defined using the ACQMODE constants
in dwf.h. The acquisition mode selects one of the following modes, ACQMODE:

Returns Bitfield of modes, needs to be parsed

Return type int

analog_in_bits_info()

analog_in_buffer_size_get()

analog_in_buffer_size_info()

analog_in_buffer_size_set(buffer_size)

analog_in_channel_attenuation_get(channel)

analog_in_channel_attenuation_set(channel, attenuation)
Configures the attenuation for each channel. When channel index is specified as -1, each enabled AnalogIn
channel attenuation will be configured to the same level. The attenuation does not change the attenuation
on the device, just informs the library about the externally applied attenuation. :param channel: :type
channel: int :param attenuation: :type attenuation: float

analog_in_channel_count()

analog_in_channel_disable(channel)
Disables the specified channel. See analog_in_channel_enable()

Parameters channel (int) –

analog_in_channel_enable(channel)
Enables the specified channel. See analog_in_channel_disable()

Parameters channel (int) –

analog_in_channel_enable_get(channel)

analog_in_channel_filter_get(channel)

analog_in_channel_filter_info()

analog_in_channel_filter_set(channel, filter)

analog_in_channel_offset_get(channel)

analog_in_channel_offset_info()

analog_in_channel_offset_set(channel, offset)

analog_in_channel_range_get(channel)

analog_in_channel_range_info()

Returns

1.5. experimentor 45

Experimentor Documentation, Release 0.3.0rc1

• volts_min (float)

• volts_max (float)

• volts_steps (float)

analog_in_channel_range_set(channel, channel_range)

analog_in_configure(reconfigure=1, start=1)

analog_in_frequency_get()

analog_in_frequency_info()
Retrieves the minimum and maximum (ADC frequency) settable sample frequency.

Returns

• min_freq (float) – Minimum allowed frequency

• max_freq (float) – Maximum allowed frequency

analog_in_frequency_set(frequency)

analog_in_noise_size_info()

analog_in_record_length_get()

analog_in_record_length_set(length)

analog_in_reset()

analog_in_samples_left()

Retrieves the number of samples left in the acquisition.

Returns Number of samples remaining

Return type int

analog_in_samples_valid()

analog_in_sampling_delay_get()

analog_in_sampling_delay_set(delay)

analog_in_sampling_slope_get()

analog_in_sampling_slope_set(slope)

Parameters slope (TriggerSlope) –

analog_in_sampling_source_get()

analog_in_sampling_source_set(source)

Parameters source (TriggerSource) –

analog_in_status(read_data=0)
Checks the status of the acquisition

Parameters read_data (int) – 0 or 1, to indicate whether data should be read from the
device

Returns The instrument state

Return type InstrumentState

analog_in_status_auto_trigger()

46 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Verifies if the acquisition is auto triggered.

Returns I guess it returns 1 if the acquisition was auto triggered

Return type int

analog_in_status_data(channel, samples, buffer=None)

Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument. It copies the
data samples to the provided buffer.

Parameters

• channel (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type np.array

analog_in_status_data_16(channel, first, samples, buffer=None)
Retrieves the acquired raw data samples from the specified idxChannel on the AnalogIn instrument. It
copies the data samples to the provided buffer or creates a new one. This is the raw data, as opposed to
what analog_in_status_data() returns.

Parameters

• channel (int) –

• first (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type numpy.array

analog_in_status_data_2(channel, first, samples, buffer=None)

Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument.
It copies the data samples to the provided buffer or creates a new buffer. This method allows to
specify which data will be copied. To retrieve all data see analog_in_status_data().

Parameters

• channel (int) –

• first (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type numpy.array

analog_in_status_index()
Retrieves the buffer write pointer which is needed in ScanScreen acquisition mode to display the scan bar.
:returns: Variable to receive the position of the acquisition. :rtype: int

1.5. experimentor 47

Experimentor Documentation, Release 0.3.0rc1

analog_in_status_noise(channel, samples)
Retrieves the acquired noise samples from the specified idxChannel on the AnalogIn instrument.

Parameters

• channel (int) –

• samples (int) –

Returns minimum noise data, maximum noise data

Return type 2-colum numpy.array

analog_in_status_record()
Retrieves information about the recording process. The data loss occurs when the device acquisition is
faster than the read process to PC. In this case, the device recording buffer is filled and data samples are
overwritten. Corrupt samples indicate that the samples have been overwritten by the acquisition process
during the previous read. In this case, try optimizing the loop process for faster execution or reduce the
acquisition frequency or record length to be less than or equal to the device buffer size (record length <=
buffer size/frequency).

Returns

• data_available (int) – Available number of samples

• data_lost (int) – Lost samples after the last check

• data_corrupt (int) – Number of samples that can be corrupt

analog_in_status_sample(channel)
Gets the last ADC conversion sample from the specified idxChannel on the AnalogIn instrument.

Parameters channel (int) –

Returns Sample value

Return type float

analog_in_trigger_auto_timeout_get()

analog_in_trigger_auto_timeout_info()

analog_in_trigger_auto_timeout_set(timeout=0)

analog_in_trigger_channel_get()

analog_in_trigger_channel_info()

analog_in_trigger_channel_set(channel)
Sets the trigger channel.

analog_in_trigger_condition_get()

analog_in_trigger_condition_info()
Returns the supported trigger type options for the instrument. They are returned (by reference) as a bit field.
This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the DwfTriggerSlope
constants in dwf.h. These trigger condition options are:

• DwfTriggerSlopeRise (This is the default setting):

– For edge and transition trigger on rising edge.

– For pulse trigger on positive pulse; For window exiting.

• DwfTriggerSlopeFall

– For edge and transition trigger on falling edge.

48 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

– For pulse trigger on negative pulse; For window entering.

• DwfTriggerSlopeEither

– For edge and transition trigger on either edge.

– For pulse trigger on either positive or negative pulse.

Returns info

Return type int

analog_in_trigger_condition_set(condition)

analog_in_trigger_filter_get()

analog_in_trigger_filter_info()
Returns the supported trigger filters. They are returned (by reference) as a bit field which can be parsed
using the IsBitSet Macro. Individual bits are defined using the FILTER constants in DWF.h. Select trigger
detector sample source, FILTER:

• filterDecimate: Looks for trigger in each ADC conversion, can detect glitches.

• filterAverage: Looks for trigger only in average of N samples, given by
analog_in_frequency_set().

analog_in_trigger_filter_set(trig_filter)

analog_in_trigger_holdoff_get()

analog_in_trigger_holdoff_info()
Returns the supported range of the trigger Hold-Off time in Seconds. The trigger hold-off is an adjustable
period of time during which the acquisition will not trigger. This feature is used when you are triggering
on burst waveform shapes, so the oscilloscope triggers only on the first eligible trigger point.

Returns

• min_holdoff (float)

• max_holdoff (float)

• steps (float)

analog_in_trigger_holdoff_set(holdoff)

analog_in_trigger_hysteresis_get()

analog_in_trigger_hysteresis_info()
Retrieves the range of valid trigger hysteresis voltage levels for the AnalogIn instrument in Volts. The
trigger detector uses two levels: low level (TriggerLevel - Hysteresis) and high level (TriggerLevel +
Hysteresis). Trigger hysteresis can be used to filter noise for Edge or Pulse trigger. The low and high
levels are used in transition time triggering.

analog_in_trigger_hysteresis_set(level)

analog_in_trigger_length_condition_get()

analog_in_trigger_length_condition_hysteresis_get()

analog_in_trigger_length_condition_info()
Returns the supported trigger length condition options for the AnalogIn instrument. They are returned (by
reference) as a bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined
using the TRIGLEN constants in DWF.h. These trigger length condition options are:

• triglenLess: Trigger immediately when a shorter pulse or transition time is detected.

1.5. experimentor 49

Experimentor Documentation, Release 0.3.0rc1

• triglenTimeout: Trigger immediately as the pulse length or transition time is reached.

• triglenMore: Trigger when the length/time is reached, and pulse or transition has ended.

Returns

Return type supported trigger length conditions

analog_in_trigger_length_condition_set(length)

analog_in_trigger_length_info()
Returns the supported range of trigger length for the instrument in Seconds. The trigger length specifies
the minimal or maximal pulse length or transition time.

analog_in_trigger_length_set(length)

analog_in_trigger_level_get()

analog_in_trigger_level_info()

analog_in_trigger_level_set(level)

analog_in_trigger_position_get()

analog_in_trigger_position_info()
Returns the minimum and maximum values of the trigger position in seconds. For Single/Repeated acqui-
sition mode the horizontal trigger position is used is relative to the buffer middle point. For Record mode
the position is relative to the start of the capture.

Todo: The documentation specifies steps as double, but it makes more sense for it to be an integer. Other
methods like analog_in_trigger_auto_timeout_info() use an integer

Returns

• min_trigger (float)

• max_trigger (float)

• steps (float)

analog_in_trigger_position_set(position)

analog_in_trigger_source_get()

analog_in_trigger_source_set(source)

analog_in_trigger_type_get()

analog_in_trigger_type_set(trig_type)

analog_out_count()
The number of analog output channels available on this board.

Returns The number of analog channels available

Return type int

analogin_noise_size_get()
Returns the used AnalogIn instrument noise buffer size. This is automatically adjusted according to the
sample buffer size. For instance, having maximum buffer size of 8192 and noise buffer size of 512, setting
the sample buffer size to 4096 the noise buffer size will be 256.

Returns Current noise buffer size

50 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Return type int

analong_in_acquisition_mode_set(mode)

Parameters mode (AcquisitionMode) –

digital_out_configure(status)

digital_out_count()
Returns the number of Digital Out channels by the device specified by hdwf.

digital_out_counter_get(channel)

digital_out_counter_info(channel)

digital_out_counter_init_get(channel)

digital_out_counter_init_set(channel, start_high, divider)
Sets the initial state and counter value of the specified channel.

digital_out_counter_set(channel, low, high)
Sets the counter low and high values for the specified channel..

digital_out_data_info(channel)
Returns the maximum buffers size, the number of custom data bits.

digital_out_data_set(channel, data_array, num_bits)

digital_out_divider_get(channel)

digital_out_divider_info(channel)

digital_out_divider_init_get(channel)

digital_out_divider_init_set(channel, divider)

digital_out_divider_set(channel, divider)

digital_out_enable_get(channel)

digital_out_enable_set(channel, enable)

digital_out_idle_get(channel)

digital_out_idle_info(channel)
Returns the supported idle output types of the channel. They are returned (by reference) as a bit field. This
bit field can be parsed using the IsBitSet Macro. Individual bits are defined using DigitalOutIdle :

• DwfDigitalOutIdleInit: Output initial value.

• DwfDigitalOutIdleLow: Low level.

• DwfDigitalOutIdleHigh: High level.

• DwfDigitalOutIdleZet: Three state.

digital_out_idle_set(channel, idle)

digital_out_internal_clock_info()

digital_out_output_get(channel)

digital_out_output_info(channel)
Returns the supported output modes of the channel. They are returned (by reference) as a bit field. This bit
field can be parsed using the IsBitSet Macro. Individual bits are defined using the DigitalOutOutput:

• DwfDigitalOutOutputPushPull: Default setting.

• DwfDigitalOutOutputOpenDrain: External pull needed.

1.5. experimentor 51

Experimentor Documentation, Release 0.3.0rc1

• DwfDigitalOutOutputOpenSource: External pull needed.

• DwfDigitalOutOutputThreeState: Available with custom and random types.

digital_out_output_set(channel, output)

digital_out_play_data_set(bits, bits_per_sample, count)

digital_out_play_rate_set(rate)

digital_out_repeat_get()

digital_out_repeat_info()

digital_out_repeat_set(repeat)

digital_out_repeat_status()

digital_out_repeat_trigger_get()

digital_out_repeat_trigger_set(trigger)
Sets the repeat trigger option. To include the trigger in wait-run repeat cycles, set fRepeatTrigger to TRUE.
It is disabled by default.

digital_out_reset()

digital_out_run_get()

digital_out_run_info()

digital_out_run_set(run_len)

digital_out_run_status()
Reads the remaining run length. It returns data from the last digital_out_status() call.

digital_out_status()

digital_out_trigger_slope_get()

digital_out_trigger_slope_set(slope)

digital_out_trigger_source_get()

digital_out_trigger_source_set(source)

digital_out_type_get(channel)

digital_out_type_info(channel)
Returns the supported types of the channel. They are returned (by reference) as a bit field. This bit field
can be parsed using the IsBitSet Macro. Individual bits are defined using DigitalOutType:

• DwfDigitalOutTypePulse: Frequency = internal frequency/divider/(low + high counter).

• DwfDigitalOutTypeCustom: Sample rate = internal frequency / divider.

• DwfDigitalOutTypeRandom: Random update rate = internal frequency/divider/counter al-
ternating between

low and high values. - DwfDigitalOutTypeROM: ROM logic, the DIO input value is used as
address for output value - DwfDigitalOutTypePlay: Supported with Digital Discovery.

digital_out_type_set(channel, out_type)

digital_out_wait_get()

digital_out_wait_info()
Returns the supported wait length range in seconds. The wait length is how long the instrument waits after
being triggered to generate the signal. Default value is zero.

52 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

digital_out_wait_set(wait)

initialize(dev_num=-1)
Initialize the communication with a device identified by its order

Parameters dev_num (int) – The device number to open, by default it opens the last device

Raises DriverException – If the device can’t be opened

Module contents

class experimentor.drivers.digilent.AnalogDiscovery
Bases: object

analog_in_acquisition_mode_get()

Returns Current mode

Return type AcquisitionMode

analog_in_acquisition_mode_info()
Returns the supported AnalogIn acquisition modes. They are returned (by reference) as a bit field. This bit
field can be parsed using the IsBitSet Macro. Individual bits are defined using the ACQMODE constants
in dwf.h. The acquisition mode selects one of the following modes, ACQMODE:

Returns Bitfield of modes, needs to be parsed

Return type int

analog_in_bits_info()

analog_in_buffer_size_get()

analog_in_buffer_size_info()

analog_in_buffer_size_set(buffer_size)

analog_in_channel_attenuation_get(channel)

analog_in_channel_attenuation_set(channel, attenuation)
Configures the attenuation for each channel. When channel index is specified as -1, each enabled AnalogIn
channel attenuation will be configured to the same level. The attenuation does not change the attenuation
on the device, just informs the library about the externally applied attenuation. :param channel: :type
channel: int :param attenuation: :type attenuation: float

analog_in_channel_count()

analog_in_channel_disable(channel)
Disables the specified channel. See analog_in_channel_enable()

Parameters channel (int) –

analog_in_channel_enable(channel)
Enables the specified channel. See analog_in_channel_disable()

Parameters channel (int) –

analog_in_channel_enable_get(channel)

analog_in_channel_filter_get(channel)

analog_in_channel_filter_info()

analog_in_channel_filter_set(channel, filter)

1.5. experimentor 53

Experimentor Documentation, Release 0.3.0rc1

analog_in_channel_offset_get(channel)

analog_in_channel_offset_info()

analog_in_channel_offset_set(channel, offset)

analog_in_channel_range_get(channel)

analog_in_channel_range_info()

Returns

• volts_min (float)

• volts_max (float)

• volts_steps (float)

analog_in_channel_range_set(channel, channel_range)

analog_in_configure(reconfigure=1, start=1)

analog_in_frequency_get()

analog_in_frequency_info()
Retrieves the minimum and maximum (ADC frequency) settable sample frequency.

Returns

• min_freq (float) – Minimum allowed frequency

• max_freq (float) – Maximum allowed frequency

analog_in_frequency_set(frequency)

analog_in_noise_size_info()

analog_in_record_length_get()

analog_in_record_length_set(length)

analog_in_reset()

analog_in_samples_left()

Retrieves the number of samples left in the acquisition.

Returns Number of samples remaining

Return type int

analog_in_samples_valid()

analog_in_sampling_delay_get()

analog_in_sampling_delay_set(delay)

analog_in_sampling_slope_get()

analog_in_sampling_slope_set(slope)

Parameters slope (TriggerSlope) –

analog_in_sampling_source_get()

analog_in_sampling_source_set(source)

Parameters source (TriggerSource) –

54 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

analog_in_status(read_data=0)
Checks the status of the acquisition

Parameters read_data (int) – 0 or 1, to indicate whether data should be read from the
device

Returns The instrument state

Return type InstrumentState

analog_in_status_auto_trigger()

Verifies if the acquisition is auto triggered.

Returns I guess it returns 1 if the acquisition was auto triggered

Return type int

analog_in_status_data(channel, samples, buffer=None)

Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument. It copies the
data samples to the provided buffer.

Parameters

• channel (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type np.array

analog_in_status_data_16(channel, first, samples, buffer=None)
Retrieves the acquired raw data samples from the specified idxChannel on the AnalogIn instrument. It
copies the data samples to the provided buffer or creates a new one. This is the raw data, as opposed to
what analog_in_status_data() returns.

Parameters

• channel (int) –

• first (int) –

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type numpy.array

analog_in_status_data_2(channel, first, samples, buffer=None)

Retrieves the acquired data samples from the specified idxChannel on the AnalogIn instrument.
It copies the data samples to the provided buffer or creates a new buffer. This method allows to
specify which data will be copied. To retrieve all data see analog_in_status_data().

Parameters

• channel (int) –

• first (int) –

1.5. experimentor 55

Experimentor Documentation, Release 0.3.0rc1

• samples (int) –

• buffer (c_double array, optional) –

Returns Array with the data

Return type numpy.array

analog_in_status_index()
Retrieves the buffer write pointer which is needed in ScanScreen acquisition mode to display the scan bar.
:returns: Variable to receive the position of the acquisition. :rtype: int

analog_in_status_noise(channel, samples)
Retrieves the acquired noise samples from the specified idxChannel on the AnalogIn instrument.

Parameters

• channel (int) –

• samples (int) –

Returns minimum noise data, maximum noise data

Return type 2-colum numpy.array

analog_in_status_record()
Retrieves information about the recording process. The data loss occurs when the device acquisition is
faster than the read process to PC. In this case, the device recording buffer is filled and data samples are
overwritten. Corrupt samples indicate that the samples have been overwritten by the acquisition process
during the previous read. In this case, try optimizing the loop process for faster execution or reduce the
acquisition frequency or record length to be less than or equal to the device buffer size (record length <=
buffer size/frequency).

Returns

• data_available (int) – Available number of samples

• data_lost (int) – Lost samples after the last check

• data_corrupt (int) – Number of samples that can be corrupt

analog_in_status_sample(channel)
Gets the last ADC conversion sample from the specified idxChannel on the AnalogIn instrument.

Parameters channel (int) –

Returns Sample value

Return type float

analog_in_trigger_auto_timeout_get()

analog_in_trigger_auto_timeout_info()

analog_in_trigger_auto_timeout_set(timeout=0)

analog_in_trigger_channel_get()

analog_in_trigger_channel_info()

analog_in_trigger_channel_set(channel)
Sets the trigger channel.

analog_in_trigger_condition_get()

56 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

analog_in_trigger_condition_info()
Returns the supported trigger type options for the instrument. They are returned (by reference) as a bit field.
This bit field can be parsed using the IsBitSet Macro. Individual bits are defined using the DwfTriggerSlope
constants in dwf.h. These trigger condition options are:

• DwfTriggerSlopeRise (This is the default setting):

– For edge and transition trigger on rising edge.

– For pulse trigger on positive pulse; For window exiting.

• DwfTriggerSlopeFall

– For edge and transition trigger on falling edge.

– For pulse trigger on negative pulse; For window entering.

• DwfTriggerSlopeEither

– For edge and transition trigger on either edge.

– For pulse trigger on either positive or negative pulse.

Returns info

Return type int

analog_in_trigger_condition_set(condition)

analog_in_trigger_filter_get()

analog_in_trigger_filter_info()
Returns the supported trigger filters. They are returned (by reference) as a bit field which can be parsed
using the IsBitSet Macro. Individual bits are defined using the FILTER constants in DWF.h. Select trigger
detector sample source, FILTER:

• filterDecimate: Looks for trigger in each ADC conversion, can detect glitches.

• filterAverage: Looks for trigger only in average of N samples, given by
analog_in_frequency_set().

analog_in_trigger_filter_set(trig_filter)

analog_in_trigger_holdoff_get()

analog_in_trigger_holdoff_info()
Returns the supported range of the trigger Hold-Off time in Seconds. The trigger hold-off is an adjustable
period of time during which the acquisition will not trigger. This feature is used when you are triggering
on burst waveform shapes, so the oscilloscope triggers only on the first eligible trigger point.

Returns

• min_holdoff (float)

• max_holdoff (float)

• steps (float)

analog_in_trigger_holdoff_set(holdoff)

analog_in_trigger_hysteresis_get()

analog_in_trigger_hysteresis_info()
Retrieves the range of valid trigger hysteresis voltage levels for the AnalogIn instrument in Volts. The
trigger detector uses two levels: low level (TriggerLevel - Hysteresis) and high level (TriggerLevel +

1.5. experimentor 57

Experimentor Documentation, Release 0.3.0rc1

Hysteresis). Trigger hysteresis can be used to filter noise for Edge or Pulse trigger. The low and high
levels are used in transition time triggering.

analog_in_trigger_hysteresis_set(level)

analog_in_trigger_length_condition_get()

analog_in_trigger_length_condition_hysteresis_get()

analog_in_trigger_length_condition_info()
Returns the supported trigger length condition options for the AnalogIn instrument. They are returned (by
reference) as a bit field. This bit field can be parsed using the IsBitSet Macro. Individual bits are defined
using the TRIGLEN constants in DWF.h. These trigger length condition options are:

• triglenLess: Trigger immediately when a shorter pulse or transition time is detected.

• triglenTimeout: Trigger immediately as the pulse length or transition time is reached.

• triglenMore: Trigger when the length/time is reached, and pulse or transition has ended.

Returns

Return type supported trigger length conditions

analog_in_trigger_length_condition_set(length)

analog_in_trigger_length_info()
Returns the supported range of trigger length for the instrument in Seconds. The trigger length specifies
the minimal or maximal pulse length or transition time.

analog_in_trigger_length_set(length)

analog_in_trigger_level_get()

analog_in_trigger_level_info()

analog_in_trigger_level_set(level)

analog_in_trigger_position_get()

analog_in_trigger_position_info()
Returns the minimum and maximum values of the trigger position in seconds. For Single/Repeated acqui-
sition mode the horizontal trigger position is used is relative to the buffer middle point. For Record mode
the position is relative to the start of the capture.

Todo: The documentation specifies steps as double, but it makes more sense for it to be an integer. Other
methods like analog_in_trigger_auto_timeout_info() use an integer

Returns

• min_trigger (float)

• max_trigger (float)

• steps (float)

analog_in_trigger_position_set(position)

analog_in_trigger_source_get()

analog_in_trigger_source_set(source)

analog_in_trigger_type_get()

58 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

analog_in_trigger_type_set(trig_type)

analog_out_count()
The number of analog output channels available on this board.

Returns The number of analog channels available

Return type int

analogin_noise_size_get()
Returns the used AnalogIn instrument noise buffer size. This is automatically adjusted according to the
sample buffer size. For instance, having maximum buffer size of 8192 and noise buffer size of 512, setting
the sample buffer size to 4096 the noise buffer size will be 256.

Returns Current noise buffer size

Return type int

analong_in_acquisition_mode_set(mode)

Parameters mode (AcquisitionMode) –

digital_out_configure(status)

digital_out_count()
Returns the number of Digital Out channels by the device specified by hdwf.

digital_out_counter_get(channel)

digital_out_counter_info(channel)

digital_out_counter_init_get(channel)

digital_out_counter_init_set(channel, start_high, divider)
Sets the initial state and counter value of the specified channel.

digital_out_counter_set(channel, low, high)
Sets the counter low and high values for the specified channel..

digital_out_data_info(channel)
Returns the maximum buffers size, the number of custom data bits.

digital_out_data_set(channel, data_array, num_bits)

digital_out_divider_get(channel)

digital_out_divider_info(channel)

digital_out_divider_init_get(channel)

digital_out_divider_init_set(channel, divider)

digital_out_divider_set(channel, divider)

digital_out_enable_get(channel)

digital_out_enable_set(channel, enable)

digital_out_idle_get(channel)

digital_out_idle_info(channel)
Returns the supported idle output types of the channel. They are returned (by reference) as a bit field. This
bit field can be parsed using the IsBitSet Macro. Individual bits are defined using DigitalOutIdle :

• DwfDigitalOutIdleInit: Output initial value.

• DwfDigitalOutIdleLow: Low level.

1.5. experimentor 59

Experimentor Documentation, Release 0.3.0rc1

• DwfDigitalOutIdleHigh: High level.

• DwfDigitalOutIdleZet: Three state.

digital_out_idle_set(channel, idle)

digital_out_internal_clock_info()

digital_out_output_get(channel)

digital_out_output_info(channel)
Returns the supported output modes of the channel. They are returned (by reference) as a bit field. This bit
field can be parsed using the IsBitSet Macro. Individual bits are defined using the DigitalOutOutput:

• DwfDigitalOutOutputPushPull: Default setting.

• DwfDigitalOutOutputOpenDrain: External pull needed.

• DwfDigitalOutOutputOpenSource: External pull needed.

• DwfDigitalOutOutputThreeState: Available with custom and random types.

digital_out_output_set(channel, output)

digital_out_play_data_set(bits, bits_per_sample, count)

digital_out_play_rate_set(rate)

digital_out_repeat_get()

digital_out_repeat_info()

digital_out_repeat_set(repeat)

digital_out_repeat_status()

digital_out_repeat_trigger_get()

digital_out_repeat_trigger_set(trigger)
Sets the repeat trigger option. To include the trigger in wait-run repeat cycles, set fRepeatTrigger to TRUE.
It is disabled by default.

digital_out_reset()

digital_out_run_get()

digital_out_run_info()

digital_out_run_set(run_len)

digital_out_run_status()
Reads the remaining run length. It returns data from the last digital_out_status() call.

digital_out_status()

digital_out_trigger_slope_get()

digital_out_trigger_slope_set(slope)

digital_out_trigger_source_get()

digital_out_trigger_source_set(source)

digital_out_type_get(channel)

digital_out_type_info(channel)
Returns the supported types of the channel. They are returned (by reference) as a bit field. This bit field
can be parsed using the IsBitSet Macro. Individual bits are defined using DigitalOutType:

60 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

• DwfDigitalOutTypePulse: Frequency = internal frequency/divider/(low + high counter).

• DwfDigitalOutTypeCustom: Sample rate = internal frequency / divider.

• DwfDigitalOutTypeRandom: Random update rate = internal frequency/divider/counter al-
ternating between

low and high values. - DwfDigitalOutTypeROM: ROM logic, the DIO input value is used as
address for output value - DwfDigitalOutTypePlay: Supported with Digital Discovery.

digital_out_type_set(channel, out_type)

digital_out_wait_get()

digital_out_wait_info()
Returns the supported wait length range in seconds. The wait length is how long the instrument waits after
being triggered to generate the signal. Default value is zero.

digital_out_wait_set(wait)

initialize(dev_num=-1)
Initialize the communication with a device identified by its order

Parameters dev_num (int) – The device number to open, by default it opens the last device

Raises DriverException – If the device can’t be opened

Module contents

experimentor.lib package

Submodules

experimentor.lib.actuator module

actuator.py

Actuators are all the devices able to modify the experiment. For example a piezo stage is an actuator. The properties
of the actuators are read-only; in principle one cannot change the port at which a specific sensor is plugged without
re-generating the object. The actuator has a property called value, that can be accessed directly like so:

`python prop = {'name': 'Actuator 1'} a = Actuator(prop) a.value =
Q_('1nm') print(a.value) `

Bear in mind that setting the value of an actuator triggers a communication with a real device. You have to be careful
if there is something connected to it.

class experimentor.lib.actuator.Actuator(properties)
Bases: object

device

make_ramp(ramp_properties)
Sets the actuator to make a ramp if it is in its capabilities. Properties established all the properties that are
needed for the ramp.

properties

value
The value of the device.

1.5. experimentor 61

Experimentor Documentation, Release 0.3.0rc1

experimentor.lib.device module

device.py

Devices are connected to the computer. They control sensors and actuators. A device has to be able to set and read
values. Setting complex devices such as a laser would require to define it as a device and its properties as sensors or
actuators respectively.

Warning: If problems arise when adding new devices, tt is important to check :meth:initialize_driver . It was
hardcoded which parameters are passed when initializing each device type.

Todo: Make flexible parameters when initializing the driver of the devices.

Section author: Aquiles Carattino

class experimentor.lib.device.Device(properties)
Bases: object

Device is responsible for the communication with real devices. Device takes only one argument, a dictionary of
properties, including the driver. Device has two properties, one called _properties that stores the initial properties
passed to the device and is read-only. _params stores the parameters passed during execution; it doesn’t store a
history, just the latest one.

add_driver(driver)
Adds the driver of the device. It has to be initialized() :param driver: driver of any class. :return: Null

apply_value(actuator, value)
Applies a given value to an actuator through the driver of the device. It is only a relay function left
here to keep the hierarchical structure of the program, i.e. actuators communicate with devices, devices
communicate with models and models with drivers.

Parameters

• actuator – instance of Actuator

• value – A value to be set. Ideally a Quantity.

apply_values(values)
Iterates over all values of a dictionary and sets the values of the driver to it. It is kept for legacy support
but it is very important to switch to apply_value, passing an actuator.

Warning: This method can misbehave with the new standards of sensors and actuators in place since
version 0.1.

Parameters values – a dictionary of parameters and desired values for those parameters. The
parameters should have units.

initialize_driver()
Initializes the driver. There are 4 types of possible connections:

• GPIB

• USB

• serial

62 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

• daq

The first 3 are based on Lantz and its initialization routine, while daq was inherited from previous code
and has a different initialization routine.

params

properties

read_value(sensor)
Reads a value from a sensor. This method is just a relay to a model, in order to keep the structure of the
program tidy.

experimentor.lib.fitgaussian module

experimentor.lib.fitgaussian.fitgaussian(data)
Returns (height, x, y, width_x, width_y) the gaussian parameters of a 2D distribution found by a fit

experimentor.lib.fitgaussian.gaussian(height, center_x, center_y, width_x, width_y)
Returns a gaussian function with the given parameters

experimentor.lib.fitgaussian.moments(data)
Returns (height, x, y, width_x, width_y) the gaussian parameters of a 2D distribution by calculating its moments

experimentor.lib.log module

Logging Options

Standardizing logging options for experimentor.

copyright Aquiles Carattino

license MIT, see LICENSE for more details

experimentor.lib.log.get_logger(name=’experimentor’, level=10)

experimentor.lib.log.get_mp_logger(level=10)

experimentor.lib.log.log_to_file(filename, level=20, fmt=None)

experimentor.lib.log.log_to_screen(logger, level=20, fmt=None)

experimentor.lib.recursive_attributes module

Functions to get and set attributes of nested objects. These functions allow to do things like:

>>> rgetattr(obj, 'sub1.sub2.attr')

Taken from: https://stackoverflow.com/a/31174427/4467480

experimentor.lib.recursive_attributes.rgetattr(obj, attr, *args)
Recursive get attribute of objects.

experimentor.lib.recursive_attributes.rsetattr(obj, attr, val)
Iteratively gets attributes of objects until the last level and then sets its value.

1.5. experimentor 63

https://stackoverflow.com/a/31174427/4467480

Experimentor Documentation, Release 0.3.0rc1

experimentor.lib.sensor module

Sensor

Sensors are all the devices able to get a value from the experiment. For example a thermocouple is a sensor. The
properties of the sensor are read-only; in principle one cannot change the port at which a specific sensor is plugged
without re-generating the object.

Section author: Aquiles Carattino

class experimentor.lib.sensor.Sensor(properties)
Bases: object

add_device(device)
Adds the driver to the current sensor. In this context a driver is a class able to read the value from the
device.

properties

value

Module contents

experimentor.models package

Subpackages

experimentor.models.daq package

Module contents

experimentor.models.devices package

Subpackages

experimentor.models.devices.cameras package

Subpackages

experimentor.models.devices.cameras.basler package

Submodules

experimentor.models.devices.cameras.basler.basler module

class experimentor.models.devices.cameras.basler.basler.BaslerCamera(camera,
ini-
tial_config=None)

Bases: experimentor.models.devices.cameras.base_camera.BaseCamera

ROI

64 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

acquisition_mode

auto_exposure
Off, Once, Continuous

Type Auto exposure can take one of three values

auto_gain
Off, Once, Continuous

Type Auto Gain must be one of three values

binning_x

binning_y

buffer_size

ccd_height

ccd_width

continuous_reads()

exposure
The exposure of the camera, defined in units of time

finalize()
Finalizes the model. It only takes care of closing the publisher. Child classes should implement their
own finalize methods (they get called automatically), and either close the publisher explicitly or use this
method.

frame_rate

gain
Gain is a float

height

initialize
Decorator for methods in models. Actions are useful when working with methods that run once, and
are normally associated with pressing of a button. Actions are multi-threaded by default, using a single
executor that returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model
itself, avoiding the need to keep track of the future returned by the action. Be aware of potential racing
conditions that may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e.
storing parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of
methods).

new_image
Base signal which implements the common pattern for defining, emitting and connecting a signal

pixel_format
Pixel format must be one of Mono8, Mono12, Mono12p

read_camera()→ list
Reads the camera and stores the image in the temp_image attribute

1.5. experimentor 65

Experimentor Documentation, Release 0.3.0rc1

start_free_run()
Starts a free run from the camera. It will preserve only the latest image. It depends on how quickly the
experiment reads from the camera whether all the images will be available or only some.

stop_camera
Decorator for methods in models. Actions are useful when working with methods that run once, and
are normally associated with pressing of a button. Actions are multi-threaded by default, using a single
executor that returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model
itself, avoiding the need to keep track of the future returned by the action. Be aware of potential racing
conditions that may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e.
storing parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of
methods).

stop_continuous_reads()

stop_free_run
Decorator for methods in models. Actions are useful when working with methods that run once, and
are normally associated with pressing of a button. Actions are multi-threaded by default, using a single
executor that returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model
itself, avoiding the need to keep track of the future returned by the action. Be aware of potential racing
conditions that may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e.
storing parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of
methods).

trigger_camera()
Triggers the camera.

width

Module contents

Submodules

experimentor.models.devices.cameras.base_camera module

Base Camera Model

Camera class with the base methods. Having a base class exposes the general API for working with cameras. This file
is important to keep track of the methods which are exposed to the View. The class BaseCamera should be subclassed

66 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

when developing new Models for other cameras. This ensures that all the methods are automatically inherited and
there are no breaks downstream.

Conventions

Images are 0-indexed. Therefore, a camera with (1024px X 1024px) will be used as img[0:1024, 0:1024] (remember
Python leaves out the last value in the slice.

Region of Interest is specified with the coordinates of the corners. A full-frame with the example above would be
given by X=[0,1023], Y=[0,1023]. Be careful, since the maximum width (or height) of the camera is 1024.

The camera keeps track of the coordinates of the initial pixel. For full-frame, this will always be [0,0]. When croping,
the corner-pixel will change. It is very important to keep track of this value when building a GUI, since after the first
crop, if the user wants to crop even further, the information has to be referenced to the already cropped area.

Notes

IMPORTANT Whatever new function is implemented in a specific model, it should be first declared in the BaseCam-
era class. In this way the other models will have access to the method and the program will keep running (perhaps
with the wrong behavior though).

class experimentor.models.devices.cameras.base_camera.BaseCamera(camera, ini-
tial_config=None)

Bases: experimentor.models.devices.base_device.ModelDevice

Base Camera model. All camera models should inherit from this model in order to extend functionality. There
are some assumptions regarding how to update different settings such as exposure, gain, region of interest.

Parameters camera (str or int) – Parameter to identify the camera when loading or initial-
izing it.

AQUISITION_MODE
Different acquisition modes: Continuous, Single, Keep last.

Type dict

cam_num
This parameter will be used to identify the camera when loading or initializing it.

Type str or int

running
Whether the camera is running or not

Type bool

max_width
Maximum width, in pixels

Type int

max_height
Maximum height, in pixels

Type int

data_type
The data type of the images generated by the camera. This can be used to allocate the correct amount of
memory in buffers, or to reduce data before displaying it. For example, np.uint16.

Type np data type

1.5. experimentor 67

Experimentor Documentation, Release 0.3.0rc1

temp_image
It stores the last image acquired by the camera. Useful for user interfaces that need to display images at a
rate different than the acquisition rate.

Type np.array

ACQUISITION_MODE = {0: 'Single', 1: 'Continuous', 2: 'Keep Last'}

MODE_CONTINUOUS = 1

MODE_LAST = 2

MODE_SINGLE_SHOT = 0

ROI
Sets up the ROI. Not all cameras are 0-indexed, so this is an important place to define the proper ROI.

vals [list or tuple] Organized as (X, Y), where the coordinates for the ROI would be X[0], X[1], Y[0],
Y[1]

acquisition_mode
Single or continuous. :param int mode: One of self.MODE_CONTINUOUS,
self.MODE_SINGLE_SHOT

Type Set the readout mode of the camera

acquisition_ready()
Checks if the acquisition in the camera is over.

binning
The binning of the camera if supported. Has to check if binning in X/Y can be different or not, etc.

The binning is specified as a list or tuple like: [X, Y], with the information of the binning in the X or Y
direction.

camera = 'Base Camera Model'

ccd_height
Returns the CCD height in pixels this is equivalent to the max_height

ccd_width
Returns the CCD width in pixels this is equivalent to the max_width

clear_ROI()
Clears the ROI by setting it to the maximum available area.

clear_binning()
Clears the binning of the camera to its default value.

configure(properties: dict)
Configure the camera based on a dictionary of properties.

Deprecated since version 0.3.0: By implementing features, this method is no longer required

exposure
Sets the exposure of the camera.

gain
Sets the gain on the camera, if possible

gain [float] The gain, depending on the camera it can be an integer, it can be specified in dB, etc.

initialize()
Initializes the camera.

68 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

read_camera()
Reads the camera and stores the image in the temp_image attribute

serial_number
Returns the serial number of the camera, or a way of identifying the camera in an experiment.

stop_acquisition()
Stops the acquisition without closing the connection to the camera.

stop_camera()
Stops the acquisition and closes the connection with the camera.

trigger_camera()
Triggers the camera.

experimentor.models.devices.cameras.exceptions module

exception experimentor.models.devices.cameras.exceptions.CameraException
Bases: experimentor.models.devices.exceptions.DeviceException

exception experimentor.models.devices.cameras.exceptions.CameraNotFound
Bases: experimentor.models.devices.cameras.exceptions.CameraException

exception experimentor.models.devices.cameras.exceptions.CameraTimeout
Bases: experimentor.models.devices.cameras.exceptions.CameraException

exception experimentor.models.devices.cameras.exceptions.WrongCameraState
Bases: experimentor.models.devices.cameras.exceptions.CameraException

Module contents

Submodules

experimentor.models.devices.base_device module

class experimentor.models.devices.base_device.ModelDevice
Bases: experimentor.models.models.BaseModel

All models for devices should inherit from this class.

experimentor.models.devices.exceptions module

exception experimentor.models.devices.exceptions.DeviceException
Bases: Exception

experimentor.models.devices.meta module

class experimentor.models.devices.meta.MetaDevice(name, bases, attrs)
Bases: experimentor.models.meta.MetaModel

This is a Meta Class that should be used only by devices and not by the experiment itself. It is only to give
more granularity to the program when wanting to perform operations on all the devices or on different possible
measurements.

1.5. experimentor 69

Experimentor Documentation, Release 0.3.0rc1

Module contents

experimentor.models.experiments package

Submodules

experimentor.models.experiments.base_experiment module

Base Experiment Model

Base class for the experiments. BaseExperiment defines the common patterns that every experiment should have.
Importantly, it starts an independent process called publisher, that will be responsible for broadcasting messages that
are appended to a queue. The messages rely on the pyZMQ library and should be tested further in order to assess their
limitations. The general pattern is that of the PUB/SUB, with one publisher and several subscribers.

The messages should include a topic and data. For this, the elements in the queue should be dictionaries with two
keywords: data and topic. data['data'] will be serialized through the use of cPickle, and is handled automati-
cally by pyZQM through the use of send_pyobj. The subscribers should be aware of this and use either unpickle
or recv_pyobj.

In order to stop the publisher process, the string 'stop' should be placed in data['data']. The message will be
broadcast and can be used to stop other processes, such as subscribers.

Todo: Check whether the serialization of objects with cPickle may be a bottleneck for performance.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.experiments.base_experiment.BaseExperiment
Bases: experimentor.models.models.BaseModel

class experimentor.models.experiments.base_experiment.Experiment(filename=None)
Bases: experimentor.models.experiments.base_experiment.BaseExperiment

Base class to define experiments. Should keep track of the basic methods needed regardless of the experiment
to be performed. For instance, a way to start and a way to finalize a measurement. This class is not meant to be
instantiated directly, but should be subclassed in each project.

Parameters filename (str or None) – Path to the config file that will be loaded. Ideally it
should be an absolute path, to prevent problems. If you submit a relative path, it will depend on
how you are running the program if the file will be found or not.

config
Properties object to store the values of the parameters of the experiments. See experimentor.
models.properties to understand the options and how it works

Type Properties

logger
The logger of the experiment, this is for internal use only

Type logger

alive_threads

connect(method, topic, *args, **kwargs)
Async method that connects the running publisher to the given method on a specific topic.

70 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Parameters

• method – method that will be connected on a given topic

• topic (str) – the topic that will be used by the subscriber to discriminate what infor-
mation to collect.

• args – extra arguments will be passed to the subscriber, which in turn will pass them to
the function

• kwargs – extra keyword arguments will be passed to the subscriber, which in turn will
pass them to the function

connections

finalize()
Needs to be overridden by child classes.

list_alive_threads

load_configuration(filename, loader=<class ’yaml.loader.SafeLoader’>)
Loads the configuration file in YAML format.

Parameters filename (str) – full path to where the configuration file is located.

Raises FileNotFoundError – if the file does not exist.

static make_filename(folder: Union[str, tuple], filename: str)
This routine will check if the folder to store data exists, and create it if not. It will also check if the
file exists, if it does, it will increase by 1 a counter until an available name appears, and return both the
directory and the filename.

Parameters

• filename – if it contains a ‘{i}’ or similar in its specification, it will use it as a counter,
if not, the number will be prepended to the filename

• folder – either a string with the full path to the folder (bear in mind differences of folder
separators) or a tuple that will be joined using os.path.join

num_threads

set_up()
Needs to be overridden by child classes.

start
Base signal which implements the common pattern for defining, emitting and connecting a signal

stop_subscribers()
Puts the proper data into every alive subscriber in order to stop it.

update_config(**kwargs)

class experimentor.models.experiments.base_experiment.FormatDict
Bases: dict

Simple solution to do partial formatting of strings. For example:

>>> a = 'fiber_end_{cartridge}_{i:04}.npy'
>>> cartridge = 123
>>> a.format_map(FormatDict(cartridge=cartridge))
'fiber_end_123_{i:04}.npy'

class experimentor.models.experiments.base_experiment.FormatPlaceholder(key)
Bases: object

1.5. experimentor 71

Experimentor Documentation, Release 0.3.0rc1

class experimentor.models.experiments.base_experiment.MetaExperiment(name,
bases,
attrs)

Bases: experimentor.models.meta.MetaModel

Meta Model type which will be responsible for keeping track of all the created experiments. It will also be
responsible for registering the publisher, in order to have only one throughout the program and accessible from
other parts of the program. This meta class may be overkill, since in principle every program will be only one
experiment, but this is left as an effort to be future-proof.

Note: Defining meta classes may generate a feeling of obscurantism in the code. It may be wise to remove it
and find a simpler/straightforward approach.

Module contents

experimentor.models.laser package

Module contents

experimentor.models.procedures package

Submodules

experimentor.models.procedures.procedure module

Module contents

Submodules

experimentor.models.action module

Action

An action is an event that gets triggered on a device. For example, a camera can have an action acquire or read.
They should normally be associated with the pressing of a button. Action is a handy decorator to register methods on a
model and have quick access to them when building a user interface. They are multi-threaded by default, however, they
share the same executor, defined at the model-level. Therefore, if a device is able to run several actions simultaneously,
different executors can be defined at the moment of Action instantiation.

To extend Actions, the best is to sub class it and re implement the get_executor method, or any other method
relevant to change the expected behavior.

Examples

A general purpose model can implement two methods: initialize and auto_calibrate, we can use the
Actions to increment their usability:

72 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

class TestModel:
@Action
def initialize(self):

print('Initializing')

@Action
def auto_calibrate(self):

print('Auto Calibrating')

tm = TestModel()
tm.initialize()
tm.auto_calibrate()
print(tm.get_actions())

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.action.Action(method=None, **kwargs)
Bases: object

Decorator for methods in models. Actions are useful when working with methods that run once, and are nor-
mally associated with pressing of a button. Actions are multi-threaded by default, using a single executor that
returns a future.

Even though Actions (intended as the method in a model) can take arguments, it may be a better approach
to store the parameters as attributes before triggering an action. In this way, triggering an action would be
equivalent to pressing a button. In the same way, actions can store return values as attribute in the model itself,
avoiding the need to keep track of the future returned by the action. Be aware of potential racing conditions that
may arise when using shared memory to exchange information.

Todo: Define a clear protocol for exchanging information with models. Should it be state-based (i.e. storing
parameters as attributes in the class) or statement based (i.e. passing parameters as arguments of methods).

get_executor()
Gets the executor either explicitly defined as an argument when instantiating the Action, or grabs it from
the parent instance, and thus is shared between all action in a model.

To change the behavior, subclass Action and overwrite this method.

get_lock()
Gets the lock specified in the keyword arguments while creating the Action, or defaults to the lock stored
in the instance and thus shared between all actions in the model.

Deprecated since version 0.3.0: Since v0.3.0 we are favoring concurrent.futures instead of lower-level
threading for Actions.

get_run()
Generates the run function that will be applied to the method. It looks a big convoluted, but it is one of
the best approaches to make it easy to extend the Actions in the longer run. The return callable grabs the
executor from the method self.get_executor().

Returns A function that takes two arguments: method and instance and that submits them to an
executor

Return type callable

1.5. experimentor 73

Experimentor Documentation, Release 0.3.0rc1

set_action(method)
Wrapper that returns this own class but initializes it with a method and a previously stored dict of kwargs.
This method is what happens when the Action itself is defined with arguments.

Parameters method (callable) – The method that is decorated by the Action

Returns Returns an instance of the Action using the previously stored kwargs but adding the
method

Return type Action

experimentor.models.decorators module

Decorators

Useful decorators for models.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

experimentor.models.decorators.avoid_repeat(func)

experimentor.models.decorators.make_async_thread(func)
Simple decorator to make a method run on a separated thread. This decorator will not work on simple functions,
since it requires the first argument to be an instantiated class (self). It will store the method in an attribute of the
class, called _threads‘, or it will create it if it does not exist yet.

TODO: Check what happens with the _thread list and inherited classes. Is there a risk that the list will be
shared? If the list is defined as a class attribute instead of an object attribute, most likely it will. If it is
defined outside of the scope and then linked to the class, also.

Warning: In complex scenarios, this simple decorator can give raise to mistakes, i.e. objects having access
to other objects threads.

experimentor.models.decorators.not_implemented(func)
Raises a warning in the logger in case the method was not implemented by child classes, but it does not prevent
the program from running.

experimentor.models.exceptions module

Model Exceptions

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

exception experimentor.models.exceptions.ExperimentorException
Bases: Exception

Base exception for all experimentor modules

exception experimentor.models.exceptions.LinkException
Bases: experimentor.models.exceptions.PropertyException

74 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

exception experimentor.models.exceptions.ModelException
Bases: experimentor.models.exceptions.ExperimentorException

exception experimentor.models.exceptions.PropertyException
Bases: experimentor.models.exceptions.ModelException

exception experimentor.models.exceptions.SignalException
Bases: experimentor.models.exceptions.ExperimentorException

experimentor.models.feature module

Features

Features in a model are those parameters that can be read, set, or both. They were modeled after Lantz Feat objects, and
the idea is that they can encapsulate common patterns in device control. They are similar to Settings in behavior,
except for the absence of a cache. Features do communicate with the device when reading a value.

For example, a feature could be the value of an analog input on a DAQ, or the temperature of a camera. They are
meant to be part of a measurement, their values can change in loops in order to make a scan. Features can be used as
decorators in pretty much the same way @propery can be used. The only difference is that they register themselves in
the models properties object, so it is possible to update values either by submitting a value directly to the Feature or
by sending a dictionary to the properties and updating all at once.

It is possible to mark a feature as a setting. In this case, the value will not be read from the device, but it will be
cached. In case it is needed to refresh a value from the device, it is possible to use a specific argument, such as None.
For example:

@Feature(setting=True, force_update_arg=0)
def exposure(self):

self.driver.get_exposure()

@exposure.setter
def exposure(self, exposure_time):

self.driver.set_exposure(exposure_time)

Todo: It is possible to define complex behavior such as unit conversion, limit checking, etc. We should narrow down
what is appropriate for a model and what should go into the Controller.

Todo: A useful pattern is to catch the exception raised by the controllers if a value is out of range, or with the wrong
units.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.feature.Feature(fget=None, fset=None, fdel=None, doc=None,
**kwargs)

Bases: object

Properties that belong to models. It makes easier the setting and getting of attributes, while at the same time
it keeps track of the properties of each model. A Feature is, fundamentally, a descriptor, that extends some
functionality by accepting keyword arguments when defining.

1.5. experimentor 75

Experimentor Documentation, Release 0.3.0rc1

Todo: There is a lot of functionality that can be implemented, but that hasn’t yet, such as checking limits, unit
conversion, etc.

name
The name of the feature, it must be unique since it will be used as a key in a dictionary.

Type str

kwargs
If the feature is initialized with arguments, they will be stored here. Only keyword arguments are allowed.

Type dict

deleter(fdel)

getter(fget)

kwargs = None

name = ''

setter(fset)

experimentor.models.meta module

Meta Models

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.meta.MetaModel(name, bases, attrs)
Bases: type

Meta Model type which will be responsible for keeping track of all the created models in the program. This is
very useful for things like automatically building a GUI, initializing/finishing all the devices, etc. and also to
perform checks at the beginning of the runtime, by doing introspection on all the defined models, regardless of
whether they are instantiated later on or no.

One of the tasks is to generate a list of signals available in each model. Signals are specified as class attributes
and therefore they can be accounted for before instantiating the class. Once the class is being instantiated, each
object will re-instantiate the signals in order to keep its own copy, and establishing the proper owner of the
signal.

get_instances(recursive=False)
Get all instances of this class in the registry.

Parameters recursive (bool) – Search for instances recursively through inherited objects

get_models(recursive=False)
Gets all the models which share the MetaModel origin.

Parameters recursive (bool) – Search recurisvely in sub classes of the model

experimentor.models.models module

76 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Models

Models are a buffer between user interactions and real devices. Models should define at least some basic common
properties, for example how to read a value from a sensor and how to apply a value to an actuator. Models can also
take care of manipulating data, for example calculating an FFT and returning it to the user.

license MIT, see LICENSE for more details

copyright 2020 Aquiles Carattino

class experimentor.models.models.BaseModel
Bases: object

All models should inherit from this base model. It defines some basic methods and checks that prevent errors
later at runtime.

_features
Dictionary-like object to store the properties of the model

Type ExpDict

_actions
List-like object to store the available actions. It also stores a lock to prevent multiple actions to be triggered
at the same time

Type ExpList

_settings
Dictionary-like object where the settings are stored. This dictionary is also used to retrieve the latest known
value of the setting.

Type ExpDict

_signals
Dictionary-like object to store the signals of the model

Type ExpDict

_subscribers
Dictionary-like object storing the subscribers to different signals arising from this model

Type ExpDict

classmethod as_process(*args, **kwargs)
Instantiate the model as a ProxyObject that will run on a separate process.

Warning: This is WORK IN PROGRESS and will remain so for the foreseeable future.

clean_up_threads()
Keep only the threads that are alive.

create_context()
Creates the ZMQ context. In case of wanting to use a specific context (perhaps globally defined), overwrite
this method in the child classes. This method is called during the model instantiation.

create_publisher()
Creates a ZMQ publisher. It will be used by signals to broadcast their information. There is a delay before
returning the publisher to guarantee that it was properly initialized before actually using it.

Returns

• zmq.Publisher – Returns the initialized publisher

1.5. experimentor 77

Experimentor Documentation, Release 0.3.0rc1

• .. todo:: This method has a high chance of being converted to an Action in order to let it
run in parallel

emit(signal_name, payload, **kwargs)
Emits a signal using the publisher bound to the model. It uses the method BaseModel.
get_publisher() to get the publisher to use. You can override that method in order to use a different
publisher (for example, an experiment-based publisher instead of a model-based one.

Notes

If subscribers are too slow, a queue will build up on the publisher, which may lead to the model itself
crashing. It is important to be sure subscribers can keep up.

Parameters

• signal_name (str) – The name of the signal is used as a topic for the publisher.
Remember that in PyZMQ, topics are filtered on the subscriber side, therefore everything
is always broadcasted broadly, which can be a bottleneck for performance in case there are
many subscribers.

• payload – It will be sent by the publisher. In case it is a numpy array, it will use a zero-
copy strategy. For the rest, it will send using send_pyobj, which serializes the payload
using pickle. This can be a slow process for complex objects.

• kwargs – Optional keyword arguments to make the method future-proof. Rigth now, the
only supported keyword argument is meta, which will append to the current meta_data
being broadcast. For numpy arrays, metadata is a dictionary with the following keys:
numpy, dtype, shape. For non-numpy objects, the only key is numpy. The submitted
metadata is appended to the internal metadata, therefore be careful not to overwrite its
keys unless you know what you are doing.

finalize()
Finalizes the model. It only takes care of closing the publisher. Child classes should implement their
own finalize methods (they get called automatically), and either close the publisher explicitly or use this
method.

classmethod get_actions()
Returns the list of actions stored in the model. In case this behavior needs to be extended, the method can
be overwritten in any child class.

get_context()
Gets the context. By default it is stored as a ‘private’ attribute of the model. Overwrite this method in child
classes if there is need to extend functionality.

Returns The context created with self.create_context()

Return type zmq.Context

classmethod get_features()
Returns the dict-like features of the model. If this behavior needs to be extended, the method can be
overwritten by any child class.

get_publisher()
Returns the publisher stored as a private attribute, and initialized during instantiation of the model. Con-
sider overwriting it in order to extend functionality.

get_publisher_port()
ZMQ allows to create publishers that bind to an available port without specifying which one. This flex-
ibility means that we should check to which port the publisher was bound if we want to use it. See
self.create_publisher() for more details.

78 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Returns The port to which the publisher is bound. A string of integers

Return type str

get_publisher_url()
Each publisher can run on a different computer. This method should return the URL in which to connect
to the publisher.

Todo: Right now it only returns localhost, this MUST be improved

initialize()

classmethod set_actions(actions)
Method to store actions in the model. It is a convenience method that can be overwritten by child classes.

subscribers

class experimentor.models.models.ExpDict
Bases: dict

class experimentor.models.models.ExpList
Bases: list

lock = <Lock(owner=None)>

class experimentor.models.models.ProxyObject(cls, *args, **kwargs)
Bases: object

Creates an object that can run on a separate process. It uses pipes to exchange information in and out. This
is experimental and not meant to be used in a real application. It is here as a way of documenting one of the
possible directions.

Note: Right now we are using the multiprocessing pipes to exchange information, it would be useful to use the
zmq options in order to have a consistent interface through the project.

experimentor.models.properties module

Properties

Every model in Experimentor has a set of properties that define their state. A camera has, for example, an exposure
time, a DAQ card has a delay between data points, and an Experiment holds global parameters, such as the number of
repetitions a measurement should take.

In many situations, the parameters are stored as a dictionary, mainly because they are easy to retrieve from a file on
the hard drive and to access from within the class. We want to keep that same approach, but adding extra features.

Features of Properties

Each parameter stored on a property will have three values: new_value, value, old_value, which represent the value
which will be set, the value that is currently set and the value that was there before. In this way it is possible to just
update on the device those values that need updating, it is also possible to revert back to the previously known value.

Each value will also be marked with a flag to_update in case the value was changed, but not yet transmitted to the
device. This allows us to collect all the values we need, for example looping through a user interface, reading a config
file, and applying only those needed whenever desired.

1.5. experimentor 79

Experimentor Documentation, Release 0.3.0rc1

The Properties have also another smart feature, achieved through linking. Linking means building a relationship
between the parameters stored within the class and the methods that need to be executed in order to get or set those
values. In the linking procedure, we can set only getter methods for read-only properties, or both methods. A general
apply function then allows to use the known methods to set the values that need to be updated to the device.

Future Roadmap

We can consider forcing methods to always act on properties defined as new/known/old in order to use that information
as a form of cache and validation strategy.

license MIT, see LICENSE for more details

copyright 2021 Aquiles Carattino

class experimentor.models.properties.Properties(parent: experimen-
tor.models.models.BaseModel,
**kwargs)

Bases: object

Class to store the properties of models. It keeps track of changes in order to monitor whether a specific value
needs to be updated. It also allows to keep track of what method should be triggered for each update.

all()
Returns a dictionary with all the known values.

Returns properties – All the known values

Return type dict

apply(property, force=False)
Applies the new value to the property. This is provided that the property is marked as to_update, or forced
to be updated.

Parameters

• property (str) – The string identifying the property

• force (bool (default: False)) – If set to true it will update the propery on the
device, regardless of whether it is marked as to_update or not.

apply_all()
Applies all changes marked as ‘to_update’, using the links to methods generated with :meth:~link

autolink()
Links the properties defined as ModelProp in the models using their setters and getters.

fetch(prop)
Fetches the desired property from the device, provided that a link is available.

fetch_all()
Fetches all the properties for which a link has been established and updates the value. This method does
not alter the to_update flag, new_value, nor old_value.

classmethod from_dict(parent, data)
Create a Properties object from a dictionary, including the linking information for methods. The data has to
be passed in the following form: {property: [value, getter, setter]}, where getter and setter are the methods
used by :meth:~link.

Parameters

• parent – class to which the properties are attached

• data (dict) – Information on the values, getter and setter for each property

80 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

get_property(prop)
Get the information of a given property, including the new value, value, old value and if it is marked as to
be updated.

Returns prop – The requested property as a dictionary

Return type dict

link(linking)
Link properties to methods for update and retrieve them.

Parameters linking (dict) – Dictionary in where information is stored as parame-
ter=>[getter, setter], for example:

linking = {'exposure_time': [self.get_exposure, self.set_exposure]}

In this case, exposure_time is the property stored, while get_exposure is the method
that will be called for getting the latest value, and set_exposure will be called to set the value.
In case set_exposure returns something different from None, no extra call to get_exposure
will be made.

to_update()
Returns a dictionary containing all the properties marked to be updated.

Returns props – all the properties that still need to be updated

Return type dict

unlink(unlink_list)
Unlinks the properties and the methods. This is just to prevent overwriting linkings under the hood and
forcing the user to actively unlink before linking again.

Parameters unlink_list (list) – List containing the names of the properties to be un-
linked.

update(values: dict)
Updates the values in the same way the update method of a dictionary works. It, however, stores the values
as a new value, it does not alter the values stored. For updating the proper values use self.upgrade().

After updating the values, use self.apply_all() to send the new values to the device.

upgrade(values, force=False)
This method actually overwrites the values stored in the properties. This method should be used only when
the real values generated by a device are known. It will change the new values to None, it will set the value
to value, and it will set the to_update flag to false.

Parameters

• values (dict) – Dictionary in the form {property: new_value}

• force (bool) – If force is set to True, it will create the missing properties instead of
raising an exception.

Module contents

experimentor.views package

Subpackages

1.5. experimentor 81

Experimentor Documentation, Release 0.3.0rc1

experimentor.views.camera package

Submodules

experimentor.views.camera.camera_viewer_widget module

Camera Viewer Widget

Wrapper around PyQtGraph ImageView.

class experimentor.views.camera.camera_viewer_widget.CameraViewerWidget(parent=None)
Bases: experimentor.views.data_view_widget.DataViewWidget

The Camera Viewer Widget is a wrapper around PyQtGraph ImageView. It adds some common methods for
getting extra mouse interactions, such as performing an auto-range through right-clicking, it allows to drag and
drop horizontal and vertical lines to define a ROI, and it allows to draw on top of the image. The core idea is to
make these options explicit, in order to systematize them in one place.

clicked_on_image: Emits [float, float] with the coordinates where the mouse was clicked on the image. Does not
distinguish between left/right clicks. Any further processing must be done downstream.

layout

Type QHBoxLayout, in case extra elements must be added

viewport

Type GraphicsLayoutWidget

view

Type ViewBox

img

Type ImageItem

imv

Type ImageView

auto_levels

Type Whether to actualize the levels of the image every time they are refreshed

add_actions_to_menu()
Adds actions to the contextual menu. If you want to have control on which actions appear, consider
subclassing this widget and overriding this method.

clicked_on_image

classmethod connect_to_camera(camera, refresh_time=50, parent=None)
Instantiate the viewer using connect_to_camera in order to get some functionality out of the box. It will
create a timer to automatically update the image

do_auto_range()
Sets the levels of the image based on the maximum and minimum. This is useful when auto-levels are off
(the default behavior), and one needs to quickly adapt the histogram.

draw_target_pointer(locations)
gets an image and draws a circle around the target locations.

82 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

Parameters locations (DataFrame) – DataFrame generated by trackpy’s locate method.
It only requires columns x and y with coordinates.

get_roi_values()
Get’s the ROI values in camera-space. It keeps track of the top left corner in order to update the values
before returning. :return: Position of the corners of the ROI region assuming 0-indexed cameras.

keyPressEvent(key)
Triggered when there is a key press with some modifier. Shift+C: Removes the cross hair from the screen
These last two events have to be handeled in the mainWindow that implemented this widget.

mouseMoved(arg)
Updates the position of the cross hair. The mouse has to be moved while pressing down the Ctrl button.

mouse_clicked(evnt)

scene()
Shortcut to getting the image scene

set_roi_lines(X, Y)

setup_cross_cut(max_size)
Set ups the horizontal line for the cross cut.

setup_cross_hair(max_size)
Sets up a cross hair.

setup_mouse_tracking()

setup_roi_lines(max_size=None)
Sets up the ROI lines surrounding the image.

Parameters max_size (list) – List containing the maximum size of the image to avoid ROIs
bigger than the CCD.

update_image(image, auto_range=False, auto_histogram_range=False)
Updates the image being displayed with some sensitive defaults, which can be over written if needed.

Module contents

class experimentor.views.camera.CameraViewerWidget(parent=None)
Bases: experimentor.views.data_view_widget.DataViewWidget

The Camera Viewer Widget is a wrapper around PyQtGraph ImageView. It adds some common methods for
getting extra mouse interactions, such as performing an auto-range through right-clicking, it allows to drag and
drop horizontal and vertical lines to define a ROI, and it allows to draw on top of the image. The core idea is to
make these options explicit, in order to systematize them in one place.

clicked_on_image: Emits [float, float] with the coordinates where the mouse was clicked on the image. Does not
distinguish between left/right clicks. Any further processing must be done downstream.

layout

Type QHBoxLayout, in case extra elements must be added

viewport

Type GraphicsLayoutWidget

view

Type ViewBox

1.5. experimentor 83

Experimentor Documentation, Release 0.3.0rc1

img

Type ImageItem

imv

Type ImageView

auto_levels

Type Whether to actualize the levels of the image every time they are refreshed

add_actions_to_menu()
Adds actions to the contextual menu. If you want to have control on which actions appear, consider
subclassing this widget and overriding this method.

clicked_on_image

classmethod connect_to_camera(camera, refresh_time=50, parent=None)
Instantiate the viewer using connect_to_camera in order to get some functionality out of the box. It will
create a timer to automatically update the image

do_auto_range()
Sets the levels of the image based on the maximum and minimum. This is useful when auto-levels are off
(the default behavior), and one needs to quickly adapt the histogram.

draw_target_pointer(locations)
gets an image and draws a circle around the target locations.

Parameters locations (DataFrame) – DataFrame generated by trackpy’s locate method.
It only requires columns x and y with coordinates.

get_roi_values()
Get’s the ROI values in camera-space. It keeps track of the top left corner in order to update the values
before returning. :return: Position of the corners of the ROI region assuming 0-indexed cameras.

keyPressEvent(key)
Triggered when there is a key press with some modifier. Shift+C: Removes the cross hair from the screen
These last two events have to be handeled in the mainWindow that implemented this widget.

mouseMoved(arg)
Updates the position of the cross hair. The mouse has to be moved while pressing down the Ctrl button.

mouse_clicked(evnt)

scene()
Shortcut to getting the image scene

set_roi_lines(X, Y)

setup_cross_cut(max_size)
Set ups the horizontal line for the cross cut.

setup_cross_hair(max_size)
Sets up a cross hair.

setup_mouse_tracking()

setup_roi_lines(max_size=None)
Sets up the ROI lines surrounding the image.

Parameters max_size (list) – List containing the maximum size of the image to avoid ROIs
bigger than the CCD.

84 Chapter 1. Installing

Experimentor Documentation, Release 0.3.0rc1

update_image(image, auto_range=False, auto_histogram_range=False)
Updates the image being displayed with some sensitive defaults, which can be over written if needed.

experimentor.views.model_view package

Submodules

experimentor.views.model_view.model_view module

class experimentor.views.model_view.model_view.ModelViewWidget(model: ex-
perimen-
tor.models.devices.base_device.ModelDevice,
parent=None)

Bases: PyQt5.QtWidgets.QWidget

get_layout()

model_to_layout()

set_layout()

Module contents

class experimentor.views.model_view.ModelViewWidget(model: experimen-
tor.models.devices.base_device.ModelDevice,
parent=None)

Bases: PyQt5.QtWidgets.QWidget

get_layout()

model_to_layout()

set_layout()

experimentor.views.widgets package

Submodules

experimentor.views.widgets.toggable_button module

class experimentor.views.widgets.toggable_button.ToggableButton(*args,
**kwargs)

Bases: PyQt5.QtWidgets.QPushButton

toggle(self)

Module contents

class experimentor.views.widgets.ToggableButton(*args, **kwargs)
Bases: PyQt5.QtWidgets.QPushButton

toggle(self)

1.5. experimentor 85

Experimentor Documentation, Release 0.3.0rc1

Submodules

experimentor.views.data_view_widget module

class experimentor.views.data_view_widget.DataViewWidget(parent=None)
Bases: PyQt5.QtWidgets.QWidget

Base class that defines some common patterns for views which are meant to display data.

default_Layout
method get_layout

Type By default, views will have a QHBoxLayout, it can be overriden when subclassing, or by
changing the

data
of what specific type of data it is.

Type This is the data being represented by the widget. This allows to define abstract methods
for saving, regardless

default_layout = 'horizontal'

get_layout()
Returns the layout specified as the class attribute default_layout. Override this method to provide more
complex behavior.

set_layout()

experimentor.views.decorators module

experimentor.views.decorators.try_except_dialog(func)
Decorator to add to methods used in user interfaces. If there is a chance of an error appearing because of devices
in the wrong state, etc. but the logic is not fail proof, you can use this decorator to display an error message with
the stack trace instead of crashing the program.

experimentor.views.exceptions module

exception experimentor.views.exceptions.ViewException
Bases: Exception

Module contents

Submodules

experimentor.management module

Module contents

86 Chapter 1. Installing

Python Module Index

e
experimentor, 86
experimentor.config, 36
experimentor.config.global_settings, 36
experimentor.core, 41
experimentor.core.app, 36
experimentor.core.data_source, 37
experimentor.core.exceptions, 37
experimentor.core.measurement_parameters,

37
experimentor.core.measurement_procedure,

37
experimentor.core.meta, 38
experimentor.core.publisher, 38
experimentor.core.pusher, 39
experimentor.core.signal, 40
experimentor.core.subscriber, 40
experimentor.core.subscriber_process,

40
experimentor.drivers, 27
experimentor.drivers.digilent, 27
experimentor.drivers.hamamatsu, 44
experimentor.drivers.hamamatsu.hamamatsu_camera.HamamatsuCamera,

43
experimentor.drivers.keysight, 44
experimentor.drivers.PhotonicScience,

43
experimentor.drivers.PhotonicScience.scmoscam,

41
experimentor.drivers.santec, 44
experimentor.lib, 64
experimentor.lib.actuator, 61
experimentor.lib.device, 62
experimentor.lib.fitgaussian, 63
experimentor.lib.log, 63
experimentor.lib.recursive_attributes,

63
experimentor.lib.sensor, 64
experimentor.management, 86

experimentor.models, 8
experimentor.models.action, 8
experimentor.models.daq, 64
experimentor.models.decorators, 74
experimentor.models.devices, 16
experimentor.models.devices.base_device,

16
experimentor.models.devices.cameras, 17
experimentor.models.devices.cameras.base_camera,

17
experimentor.models.devices.cameras.basler,

66
experimentor.models.devices.cameras.basler.basler,

19
experimentor.models.devices.cameras.exceptions,

19
experimentor.models.devices.exceptions,

17
experimentor.models.devices.meta, 17
experimentor.models.exceptions, 16
experimentor.models.experiments, 21
experimentor.models.experiments.base_experiment,

21
experimentor.models.feature, 10
experimentor.models.laser, 72
experimentor.models.meta, 16
experimentor.models.models, 13
experimentor.models.procedures, 72
experimentor.models.procedures.procedure,

72
experimentor.models.properties, 11
experimentor.views, 23
experimentor.views.camera, 24
experimentor.views.camera.camera_viewer_widget,

25
experimentor.views.data_view_widget, 23
experimentor.views.decorators, 24
experimentor.views.exceptions, 24
experimentor.views.model_view, 85
experimentor.views.model_view.model_view,

87

Experimentor Documentation, Release 0.3.0rc1

27
experimentor.views.widgets, 27
experimentor.views.widgets.toggable_button,

27

88 Python Module Index

Index

Symbols
_actions (experimentor.models.models.BaseModel at-

tribute), 13, 77
_features (experimentor.models.models.BaseModel

attribute), 13, 77
_settings (experimentor.models.models.BaseModel

attribute), 13, 77
_signals (experimentor.models.models.BaseModel at-

tribute), 13, 77
_subscribers (experimen-

tor.models.models.BaseModel attribute),
13, 77

A
AbortSnap() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

ACQUISITION_MODE (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

acquisition_mode (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

acquisition_mode (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 19, 64

acquisition_ready() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 18, 68

Action (class in experimentor.models.action), 9, 73
Actuator (class in experimentor.lib.actuator), 61
add_actions_to_menu() (experimen-

tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 82

add_actions_to_menu() (experimen-
tor.views.camera.CameraViewerWidget
method), 24, 84

add_device() (experimentor.lib.sensor.Sensor
method), 64

add_driver() (experimentor.lib.device.Device
method), 62

alive_threads (experimen-
tor.models.experiments.base_experiment.Experiment
attribute), 22, 70

all() (experimentor.models.properties.Properties
method), 11, 80

analog_in_acquisition_mode_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 27, 45, 53

analog_in_acquisition_mode_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 27, 45, 53

analog_in_bits_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

analog_in_buffer_size_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

analog_in_buffer_size_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

analog_in_buffer_size_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

analog_in_channel_attenuation_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_attenuation_set() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_count() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

analog_in_channel_disable() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

analog_in_channel_enable() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 53

89

Experimentor Documentation, Release 0.3.0rc1

analog_in_channel_enable_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_filter_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_filter_info() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_filter_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_offset_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 53

analog_in_channel_offset_info() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 54

analog_in_channel_offset_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 54

analog_in_channel_range_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 45, 54

analog_in_channel_range_info() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 28, 45, 54

analog_in_channel_range_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 46, 54

analog_in_configure() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 46, 54

analog_in_frequency_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 46, 54

analog_in_frequency_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
28, 46, 54

analog_in_frequency_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_noise_size_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_record_length_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_record_length_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_reset() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_samples_left() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_samples_valid() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_sampling_delay_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 54

analog_in_sampling_delay_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 54

analog_in_sampling_slope_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 54

analog_in_sampling_slope_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 54

analog_in_sampling_source_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 54

analog_in_sampling_source_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 54

analog_in_status() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 46, 54

analog_in_status_auto_trigger() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 29, 46, 55

analog_in_status_data() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
29, 47, 55

analog_in_status_data_16() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
30, 47, 55

analog_in_status_data_2() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
30, 47, 55

analog_in_status_index() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
30, 47, 56

analog_in_status_noise() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
30, 47, 56

analog_in_status_record() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
30, 48, 56

analog_in_status_sample() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
31, 48, 56

analog_in_trigger_auto_timeout_get()
(experimentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

90 Index

Experimentor Documentation, Release 0.3.0rc1

analog_in_trigger_auto_timeout_info()
(experimentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_auto_timeout_set()
(experimentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_channel_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_channel_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_channel_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_condition_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_condition_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 31, 48, 56

analog_in_trigger_condition_set() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 31, 49, 57

analog_in_trigger_filter_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_filter_info() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_filter_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_holdoff_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_holdoff_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_holdoff_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_hysteresis_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_hysteresis_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 57

analog_in_trigger_hysteresis_set() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 58

analog_in_trigger_length_condition_get()
(experimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 58

analog_in_trigger_length_condition_hysteresis_get()
(experimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 58

analog_in_trigger_length_condition_info()
(experimentor.drivers.digilent.AnalogDiscovery
method), 32, 49, 58

analog_in_trigger_length_condition_set()
(experimentor.drivers.digilent.AnalogDiscovery
method), 32, 50, 58

analog_in_trigger_length_info() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 32, 50, 58

analog_in_trigger_length_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_level_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 50, 58

analog_in_trigger_level_info() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_level_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 50, 58

analog_in_trigger_position_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_position_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_position_set() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_source_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_source_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 33, 50, 58

analog_in_trigger_type_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 50, 58

analog_in_trigger_type_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 50, 58

analog_out_count() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 50, 59

AnalogDiscovery (class in experimen-
tor.drivers.digilent), 27, 45, 53

analogin_noise_size_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 50, 59

analong_in_acquisition_mode_set() (ex-

Index 91

Experimentor Documentation, Release 0.3.0rc1

perimentor.drivers.digilent.AnalogDiscovery
method), 33, 51, 59

apply() (experimentor.models.properties.Properties
method), 11, 80

apply_all() (experimen-
tor.models.properties.Properties method),
12, 80

apply_value() (experimentor.lib.device.Device
method), 62

apply_values() (experimentor.lib.device.Device
method), 62

AQUISITION_MODE (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 17, 67

as_process() (experimen-
tor.models.models.BaseModel class method),
14, 77

auto_exposure (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 19, 65

auto_gain (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

auto_levels (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
attribute), 26, 82

auto_levels (experimen-
tor.views.camera.CameraViewerWidget at-
tribute), 24, 84

AutoBinningFilter() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

autolink() (experimen-
tor.models.properties.Properties method),
12, 80

avoid_repeat() (in module experimen-
tor.models.decorators), 74

B
BaseCamera (class in experimen-

tor.models.devices.cameras.base_camera),
17, 67

BaseExperiment (class in experimen-
tor.models.experiments.base_experiment),
22, 70

BaseModel (class in experimentor.models.models), 13,
77

BaslerCamera (class in experimen-
tor.models.devices.cameras.basler.basler),
19, 64

binning (experimentor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

binning_x (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera

attribute), 20, 65
binning_y (experimen-

tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

buffer_size (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

C
cam_num (experimentor.models.devices.cameras.base_camera.BaseCamera

attribute), 17, 67
camera (experimentor.models.devices.cameras.base_camera.BaseCamera

attribute), 18, 68
CameraException, 19, 69
CameraNotFound, 19, 69
CameraTimeout, 19, 69
CameraViewerWidget (class in experimen-

tor.views.camera), 24, 83
CameraViewerWidget (class in experimen-

tor.views.camera.camera_viewer_widget),
25, 82

ccd_height (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

ccd_height (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

ccd_width (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

ccd_width (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

check_parameters() (experimen-
tor.core.measurement_procedure.Procedure
method), 37

clean_up_threads() (experimen-
tor.models.models.BaseModel method), 14,
77

clear_binning() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 68

clear_ROI() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 68

clicked_on_image (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
attribute), 26, 82

clicked_on_image (experimen-
tor.views.camera.CameraViewerWidget at-
tribute), 24, 84

Close() (experimentor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

92 Index

Experimentor Documentation, Release 0.3.0rc1

config (experimentor.models.experiments.base_experiment.Experiment
attribute), 22, 70

configure() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 68

connect() (experimen-
tor.core.data_source.DataSource method),
37

connect() (experimen-
tor.models.experiments.base_experiment.Experiment
method), 22, 70

connect_to_camera() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
class method), 26, 82

connect_to_camera() (experimen-
tor.views.camera.CameraViewerWidget class
method), 24, 84

connections (experimen-
tor.models.experiments.base_experiment.Experiment
attribute), 22, 71

continuous_reads() (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
method), 20, 65

create_context() (experimen-
tor.models.models.BaseModel method), 14,
77

create_publisher() (experimen-
tor.models.models.BaseModel method), 14,
77

D
data (experimentor.views.data_view_widget.DataViewWidget

attribute), 23, 86
data_type (experimen-

tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 67

DataSource (class in experimentor.core.data_source),
37

DataViewWidget (class in experimen-
tor.views.data_view_widget), 23, 86

default_Layout (experimen-
tor.views.data_view_widget.DataViewWidget
attribute), 23, 86

default_layout (experimen-
tor.views.data_view_widget.DataViewWidget
attribute), 24, 86

deleter() (experimentor.models.feature.Feature
method), 10, 76

Demangle() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

Device (class in experimentor.lib.device), 62
device (experimentor.lib.actuator.Actuator attribute),

61

DeviceException, 17, 69
digital_out_configure() (experimen-

tor.drivers.digilent.AnalogDiscovery method),
33, 51, 59

digital_out_count() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 51, 59

digital_out_counter_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
33, 51, 59

digital_out_counter_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_counter_init_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 34, 51, 59

digital_out_counter_init_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 34, 51, 59

digital_out_counter_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_data_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_data_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_divider_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_divider_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_divider_init_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 34, 51, 59

digital_out_divider_init_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 34, 51, 59

digital_out_divider_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_enable_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_enable_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_idle_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 59

digital_out_idle_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),

Index 93

Experimentor Documentation, Release 0.3.0rc1

34, 51, 59
digital_out_idle_set() (experimen-

tor.drivers.digilent.AnalogDiscovery method),
34, 51, 60

digital_out_internal_clock_info() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 34, 51, 60

digital_out_output_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 60

digital_out_output_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 51, 60

digital_out_output_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 52, 60

digital_out_play_data_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 52, 60

digital_out_play_rate_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 52, 60

digital_out_repeat_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
34, 52, 60

digital_out_repeat_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_repeat_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_repeat_status() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_repeat_trigger_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 35, 52, 60

digital_out_repeat_trigger_set() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 35, 52, 60

digital_out_reset() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_run_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_run_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_run_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_run_status() (experimen-
tor.drivers.digilent.AnalogDiscovery method),

35, 52, 60
digital_out_status() (experimen-

tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_trigger_slope_get() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 35, 52, 60

digital_out_trigger_slope_set() (exper-
imentor.drivers.digilent.AnalogDiscovery
method), 35, 52, 60

digital_out_trigger_source_get() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 35, 52, 60

digital_out_trigger_source_set() (ex-
perimentor.drivers.digilent.AnalogDiscovery
method), 35, 52, 60

digital_out_type_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_type_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 60

digital_out_type_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 61

digital_out_wait_get() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 61

digital_out_wait_info() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 61

digital_out_wait_set() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 52, 61

do_auto_range() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 82

do_auto_range() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

draw_target_pointer() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 82

draw_target_pointer() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

DuplicatedParameter, 37

E
emit() (experimentor.core.signal.Signal method), 40
emit() (experimentor.models.models.BaseModel

method), 14, 78
EnableAutoLevel() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS

94 Index

Experimentor Documentation, Release 0.3.0rc1

method), 41
EnableBestFit() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableBinningFilter() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableBrightPixel() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableClip() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableFlatField() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableGamma() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableOffset() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableRemapping() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableSharpening() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableSmooth() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

EnableStreaming() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

ExpDict (class in experimentor.models.models), 15, 79
Experiment (class in experimen-

tor.models.experiments.base_experiment),
22, 70

ExperimentDefinitionException, 37
experimentor (module), 86
experimentor.config (module), 36
experimentor.config.global_settings

(module), 36
experimentor.core (module), 41
experimentor.core.app (module), 36
experimentor.core.data_source (module), 37
experimentor.core.exceptions (module), 37
experimentor.core.measurement_parameters

(module), 37
experimentor.core.measurement_procedure

(module), 37
experimentor.core.meta (module), 38
experimentor.core.publisher (module), 38
experimentor.core.pusher (module), 39

experimentor.core.signal (module), 40
experimentor.core.subscriber (module), 40
experimentor.core.subscriber_process

(module), 40
experimentor.drivers (module), 27, 61
experimentor.drivers.digilent (module), 27,

53
experimentor.drivers.hamamatsu (module),

44
experimentor.drivers.hamamatsu.hamamatsu_camera.HamamatsuCamera

(module), 43
experimentor.drivers.keysight (module), 44
experimentor.drivers.PhotonicScience

(module), 43
experimentor.drivers.PhotonicScience.scmoscam

(module), 41
experimentor.drivers.santec (module), 44
experimentor.lib (module), 64
experimentor.lib.actuator (module), 61
experimentor.lib.device (module), 62
experimentor.lib.fitgaussian (module), 63
experimentor.lib.log (module), 63
experimentor.lib.recursive_attributes

(module), 63
experimentor.lib.sensor (module), 64
experimentor.management (module), 86
experimentor.models (module), 8, 81
experimentor.models.action (module), 8, 72
experimentor.models.daq (module), 64
experimentor.models.decorators (module),

74
experimentor.models.devices (module), 16, 70
experimentor.models.devices.base_device

(module), 16, 69
experimentor.models.devices.cameras

(module), 17, 69
experimentor.models.devices.cameras.base_camera

(module), 17, 66
experimentor.models.devices.cameras.basler

(module), 66
experimentor.models.devices.cameras.basler.basler

(module), 19, 64
experimentor.models.devices.cameras.exceptions

(module), 19, 69
experimentor.models.devices.exceptions

(module), 17, 69
experimentor.models.devices.meta (mod-

ule), 17, 69
experimentor.models.exceptions (module),

16, 74
experimentor.models.experiments (module),

21, 72
experimentor.models.experiments.base_experiment

(module), 21, 70

Index 95

Experimentor Documentation, Release 0.3.0rc1

experimentor.models.feature (module), 10, 75
experimentor.models.laser (module), 72
experimentor.models.meta (module), 16, 76
experimentor.models.models (module), 13, 76
experimentor.models.procedures (module),

72
experimentor.models.procedures.procedure

(module), 72
experimentor.models.properties (module),

11, 79
experimentor.views (module), 23, 86
experimentor.views.camera (module), 24, 83
experimentor.views.camera.camera_viewer_widget

(module), 25, 82
experimentor.views.data_view_widget

(module), 23, 86
experimentor.views.decorators (module), 24,

86
experimentor.views.exceptions (module), 24,

86
experimentor.views.model_view (module), 85
experimentor.views.model_view.model_view

(module), 27, 85
experimentor.views.widgets (module), 27, 85
experimentor.views.widgets.toggable_button

(module), 27, 85
ExperimentorException, 16, 37, 74
ExperimentorProcess (class in experimen-

tor.core.meta), 38
ExperimentorThread (class in experimen-

tor.core.meta), 38
ExpList (class in experimentor.models.models), 15, 79
exposure (experimen-

tor.models.devices.cameras.base_camera.BaseCamera
attribute), 19, 68

exposure (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

F
Feature (class in experimentor.models.feature), 10, 75
fetch() (experimentor.models.properties.Properties

method), 12, 80
fetch_all() (experimen-

tor.models.properties.Properties method),
12, 80

finalize() (experimen-
tor.core.data_source.DataSource method),
37

finalize() (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
method), 20, 65

finalize() (experimen-
tor.models.experiments.base_experiment.Experiment

method), 22, 71
finalize() (experimentor.models.models.BaseModel

method), 14, 78
finish() (experimentor.core.pusher.Pusher method),

39
fitgaussian() (in module experimen-

tor.lib.fitgaussian), 63
FormatDict (class in experimen-

tor.models.experiments.base_experiment),
23, 71

FormatPlaceholder (class in experimen-
tor.models.experiments.base_experiment),
23, 71

frame_rate (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

FreeSequence() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

from_dict() (experimen-
tor.models.properties.Properties class method),
12, 80

G
gain (experimentor.models.devices.cameras.base_camera.BaseCamera

attribute), 19, 68
gain (experimentor.models.devices.cameras.basler.basler.BaslerCamera

attribute), 20, 65
gaussian() (in module experimentor.lib.fitgaussian),

63
get_actions() (experimen-

tor.models.models.BaseModel class method),
15, 78

get_context() (experimen-
tor.models.models.BaseModel method), 15,
78

get_executor() (experimentor.models.action.Action
method), 9, 73

get_features() (experimen-
tor.models.models.BaseModel class method),
15, 78

get_instances() (experimen-
tor.core.meta.MetaProcess method), 38

get_instances() (experimen-
tor.models.meta.MetaModel method), 16,
76

get_layout() (experimen-
tor.views.data_view_widget.DataViewWidget
method), 24, 86

get_layout() (experimen-
tor.views.model_view.model_view.ModelViewWidget
method), 27, 85

get_layout() (experimen-
tor.views.model_view.ModelViewWidget

96 Index

Experimentor Documentation, Release 0.3.0rc1

method), 85
get_lock() (experimentor.models.action.Action

method), 9, 73
get_logger() (in module experimentor.lib.log), 63
get_models() (experimen-

tor.models.meta.MetaModel method), 16,
76

get_mp_logger() (in module experimentor.lib.log),
63

get_property() (experimen-
tor.models.properties.Properties method),
12, 81

get_publisher() (experimen-
tor.models.models.BaseModel method), 15,
78

get_publisher_port() (experimen-
tor.models.models.BaseModel method), 15,
78

get_publisher_url() (experimen-
tor.models.models.BaseModel method), 15,
79

get_roi_values() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

get_roi_values() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

get_run() (experimentor.models.action.Action
method), 9, 73

GetDLL() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 41

GetDLLName() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetImage() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetImagePointer() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetMode() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetName() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetOptions() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetPedestal() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetRawImage() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetRemapSize() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetSequencePointer() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetSize() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetSizeMax() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetState() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetStatus() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

GetTemperature() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

getter() (experimentor.models.feature.Feature
method), 11, 76

GEVSCMOS (class in experimen-
tor.drivers.PhotonicScience.scmoscam), 41

H
Has8bitGainModes() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

HasBinning() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

HasClockSpeedLimit() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

HasHPMapping() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

HasIntensifier() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

HasTemperature() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

height (experimentor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

I
i (experimentor.core.pusher.Pusher attribute), 39
img (experimentor.views.camera.camera_viewer_widget.CameraViewerWidget

attribute), 26, 82

Index 97

Experimentor Documentation, Release 0.3.0rc1

img (experimentor.views.camera.CameraViewerWidget
attribute), 24, 83

imv (experimentor.views.camera.camera_viewer_widget.CameraViewerWidget
attribute), 26, 82

imv (experimentor.views.camera.CameraViewerWidget
attribute), 24, 84

InitFunctions() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

initialize (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

initialize() (experimen-
tor.core.data_source.DataSource method),
37

initialize() (experimen-
tor.drivers.digilent.AnalogDiscovery method),
35, 53, 61

initialize() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 68

initialize() (experimen-
tor.models.models.BaseModel method), 15,
79

initialize_driver() (experimen-
tor.lib.device.Device method), 62

InitSequence() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

IsFlipped() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

IsInCamCor() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

IsIntensifier() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

K
keyPressEvent() (experimen-

tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

keyPressEvent() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

kwargs (experimentor.models.feature.Feature attribute),
10, 11, 76

L
layout (experimentor.views.camera.camera_viewer_widget.CameraViewerWidget

attribute), 25, 82
layout (experimentor.views.camera.CameraViewerWidget

attribute), 24, 83

link() (experimentor.models.properties.Properties
method), 12, 81

LinkException, 16, 74
list_alive_threads (experimen-

tor.models.experiments.base_experiment.Experiment
attribute), 22, 71

load_configuration() (experimen-
tor.models.experiments.base_experiment.Experiment
method), 22, 71

LoadCamDLL() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

lock (experimentor.core.pusher.Pusher attribute), 39
lock (experimentor.models.models.ExpList attribute),

15, 79
log_to_file() (in module experimentor.lib.log), 63
log_to_screen() (in module experimentor.lib.log),

63
logger (experimentor.models.experiments.base_experiment.Experiment

attribute), 22, 70

M
make_async_thread() (in module experimen-

tor.models.decorators), 74
make_filename() (experimen-

tor.models.experiments.base_experiment.Experiment
static method), 22, 71

make_ramp() (experimentor.lib.actuator.Actuator
method), 61

MakeFlatField() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

max_height (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 67

max_width (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 67

MetaDevice (class in experimen-
tor.models.devices.meta), 17, 69

MetaExperiment (class in experimen-
tor.models.experiments.base_experiment),
23, 71

MetaModel (class in experimentor.models.meta), 16, 76
MetaProcess (class in experimentor.core.meta), 38
MODE_CONTINUOUS (experimen-

tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

MODE_LAST (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

MODE_SINGLE_SHOT (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

98 Index

Experimentor Documentation, Release 0.3.0rc1

model_to_layout() (experimen-
tor.views.model_view.model_view.ModelViewWidget
method), 27, 85

model_to_layout() (experimen-
tor.views.model_view.ModelViewWidget
method), 85

ModelDefinitionException, 37
ModelDevice (class in experimen-

tor.models.devices.base_device), 16, 69
ModelException, 16, 74
ModelViewWidget (class in experimen-

tor.views.model_view), 85
ModelViewWidget (class in experimen-

tor.views.model_view.model_view), 27, 85
moments() (in module experimentor.lib.fitgaussian), 63
mouse_clicked() (experimen-

tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

mouse_clicked() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

mouseMoved() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

mouseMoved() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

N
name (experimentor.core.measurement_parameters.Parameter

attribute), 37
name (experimentor.models.feature.Feature attribute),

10, 11, 76
new_image (experimen-

tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

not_implemented() (in module experimen-
tor.models.decorators), 74

num_threads (experimen-
tor.models.experiments.base_experiment.Experiment
attribute), 23, 71

O
Open() (experimentor.drivers.PhotonicScience.scmoscam.GEVSCMOS

method), 42
OpenMap() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

P
Parameter (class in experimen-

tor.core.measurement_parameters), 37
params (experimentor.lib.device.Device attribute), 63

pixel_format (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 20, 65

Procedure (class in experimen-
tor.core.measurement_procedure), 37

Properties (class in experimentor.models.properties),
11, 80

properties (experimentor.lib.actuator.Actuator at-
tribute), 61

properties (experimentor.lib.device.Device attribute),
63

properties (experimentor.lib.sensor.Sensor attribute),
64

PropertyException, 16, 75
ProxyObject (class in experimentor.models.models),

15, 79
publish() (experimentor.core.pusher.Pusher method),

39
Publisher (class in experimentor.core.publisher), 38
Pusher (class in experimentor.core.pusher), 39
pusher (experimentor.core.pusher.Pusher attribute), 39

R
read_camera() (experimen-

tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 68

read_camera() (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
method), 20, 65

read_value() (experimentor.lib.device.Device
method), 63

Remap() (experimentor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

ResetOptions() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

rgetattr() (in module experimen-
tor.lib.recursive_attributes), 63

ROI (experimentor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 68

ROI (experimentor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 19, 64

rsetattr() (in module experimen-
tor.lib.recursive_attributes), 63

run() (experimentor.core.publisher.Publisher method),
38

run() (experimentor.core.subscriber.Subscriber
method), 40

run() (experimentor.core.subscriber_process.Subscriber
method), 40

running (experimentor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 67

Index 99

Experimentor Documentation, Release 0.3.0rc1

S
SaveSequence() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

scene() (experimentor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

scene() (experimentor.views.camera.CameraViewerWidget
method), 25, 84

SelectIportDevice() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

Sensor (class in experimentor.lib.sensor), 64
serial_number (experimen-

tor.models.devices.cameras.base_camera.BaseCamera
attribute), 19, 69

set_action() (experimentor.models.action.Action
method), 9, 73

set_actions() (experimen-
tor.models.models.BaseModel class method),
15, 79

set_layout() (experimen-
tor.views.data_view_widget.DataViewWidget
method), 24, 86

set_layout() (experimen-
tor.views.model_view.model_view.ModelViewWidget
method), 27, 85

set_layout() (experimen-
tor.views.model_view.ModelViewWidget
method), 85

set_roi_lines() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

set_roi_lines() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

set_up() (experimen-
tor.models.experiments.base_experiment.Experiment
method), 23, 71

SetALCMaxExp() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

SetALCWin() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 42

SetBFPeek() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetChipGain() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetClockSpeed() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetExposure() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetFlatAverage() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetFlickerMode() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetGainMode() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetGammaBright() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetGammaPeak() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetIFDelay() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetIntensifierGain() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetPowerSavingMode() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetSoftBin() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetSubArea() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SetTemperature() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

setter() (experimentor.models.feature.Feature
method), 11, 76

Settings (class in experimentor.config), 36
SetTrigger() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

setup_cross_cut() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

setup_cross_cut() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

setup_cross_hair() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 26, 83

setup_cross_hair() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

setup_mouse_tracking() (experimen-

100 Index

Experimentor Documentation, Release 0.3.0rc1

tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 27, 83

setup_mouse_tracking() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

setup_roi_lines() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 27, 83

setup_roi_lines() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

SetVideoGain() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

Signal (class in experimentor.core.signal), 40
SignalException, 16, 75
Snap() (experimentor.drivers.PhotonicScience.scmoscam.GEVSCMOS

method), 43
SnapAndReturn() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SnapSequence() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

SoftBinImage() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

start (experimentor.models.experiments.base_experiment.Experiment
attribute), 23, 71

start_free_run() (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
method), 20, 65

start_publisher() (in module experimen-
tor.core.publisher), 38

stop() (experimentor.core.publisher.Publisher
method), 38

stop() (experimentor.core.subscriber.Subscriber
method), 40

stop() (experimentor.core.subscriber_process.Subscriber
method), 40

stop_acquisition() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 69

stop_camera (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
attribute), 21, 66

stop_camera() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 69

stop_continuous_reads() (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
method), 21, 66

stop_free_run (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera

attribute), 21, 66
stop_subscribers() (experimen-

tor.models.experiments.base_experiment.Experiment
method), 23, 71

Subscriber (class in experimentor.core.subscriber),
40

Subscriber (class in experimen-
tor.core.subscriber_process), 40

subscribers (experimen-
tor.models.models.BaseModel attribute),
15, 79

T
temp_image (experimen-

tor.models.devices.cameras.base_camera.BaseCamera
attribute), 18, 67

to_update() (experimen-
tor.models.properties.Properties method),
12, 81

ToggableButton (class in experimen-
tor.views.widgets), 27, 85

ToggableButton (class in experimen-
tor.views.widgets.toggable_button), 27, 85

toggle() (experimen-
tor.views.widgets.toggable_button.ToggableButton
method), 27, 85

toggle() (experimentor.views.widgets.ToggableButton
method), 27, 85

topic_i (experimentor.core.pusher.Pusher attribute),
39

trigger_camera() (experimen-
tor.models.devices.cameras.base_camera.BaseCamera
method), 19, 69

trigger_camera() (experimen-
tor.models.devices.cameras.basler.basler.BaslerCamera
method), 21, 66

try_except_dialog() (in module experimen-
tor.views.decorators), 24, 86

U
unlink() (experimentor.models.properties.Properties

method), 12, 81
UnloadCamDLL() (experimen-

tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

update() (experimentor.models.properties.Properties
method), 13, 81

update_config() (experimen-
tor.models.experiments.base_experiment.Experiment
method), 23, 71

update_image() (experimen-
tor.views.camera.camera_viewer_widget.CameraViewerWidget
method), 27, 83

Index 101

Experimentor Documentation, Release 0.3.0rc1

update_image() (experimen-
tor.views.camera.CameraViewerWidget
method), 25, 84

UpdateSize() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

UpdateSizeMax() (experimen-
tor.drivers.PhotonicScience.scmoscam.GEVSCMOS
method), 43

upgrade() (experimentor.models.properties.Properties
method), 13, 81

url (experimentor.core.signal.Signal attribute), 40

V
value (experimentor.lib.actuator.Actuator attribute), 61
value (experimentor.lib.sensor.Sensor attribute), 64
view (experimentor.views.camera.camera_viewer_widget.CameraViewerWidget

attribute), 26, 82
view (experimentor.views.camera.CameraViewerWidget

attribute), 24, 83
ViewException, 24, 86
viewport (experimen-

tor.views.camera.camera_viewer_widget.CameraViewerWidget
attribute), 26, 82

viewport (experimen-
tor.views.camera.CameraViewerWidget at-
tribute), 24, 83

W
width (experimentor.models.devices.cameras.basler.basler.BaslerCamera

attribute), 21, 66
WrongCameraState, 19, 69

102 Index

	Installing
	Setting up a Python working environment
	Installation instructions
	Starting to use the Experimentor
	Experimentor Reference
	experimentor

	Python Module Index
	Index

